С чего начать учить машинное обучение

Введение в машинное обучение

1.1 Введение

Благодаря машинному обучению программист не обязан писать инструкции, учитывающие все возможные проблемы и содержащие все решения. Вместо этого в компьютер (или отдельную программу) закладывают алгоритм самостоятельного нахождения решений путём комплексного использования статистических данных, из которых выводятся закономерности и на основе которых делаются прогнозы.

Технология машинного обучения на основе анализа данных берёт начало в 1950 году, когда начали разрабатывать первые программы для игры в шашки. За прошедшие десятилетий общий принцип не изменился. Зато благодаря взрывному росту вычислительных мощностей компьютеров многократно усложнились закономерности и прогнозы, создаваемые ими, и расширился круг проблем и задач, решаемых с использованием машинного обучения.

Чтобы запустить процесс машинного обучение, для начала необходимо загрузить в компьютер Датасет(некоторое количество исходных данных), на которых алгоритм будет учиться обрабатывать запросы. Например, могут быть фотографии собак и котов, на которых уже есть метки, обозначающие к кому они относятся. После процесса обучения, программа уже сама сможет распознавать собак и котов на новых изображениях без содержания меток. Процесс обучения продолжается и после выданных прогнозов, чем больше данных мы проанализировали программой, тем более точно она распознает нужные изображения.

Благодаря машинному обучению компьютеры учатся распознавать на фотографиях и рисунках не только лица, но и пейзажи, предметы, текст и цифры. Что касается текста, то и здесь не обойтись без машинного обучения: функция проверки грамматики сейчас присутствует в любом текстовом редакторе и даже в телефонах. Причем учитывается не только написание слов, но и контекст, оттенки смысла и другие тонкие лингвистические аспекты. Более того, уже существует программное обеспечение, способное без участия человека писать новостные статьи (на тему экономики и, к примеру, спорта).

1.2 Типы задач машинного обучения

Все задачи, решаемые с помощью ML, относятся к одной из следующих категорий.

1)Задача регрессии – прогноз на основе выборки объектов с различными признаками. На выходе должно получиться вещественное число (2, 35, 76.454 и др.), к примеру цена квартиры, стоимость ценной бумаги по прошествии полугода, ожидаемый доход магазина на следующий месяц, качество вина при слепом тестировании.

2)Задача классификации – получение категориального ответа на основе набора признаков. Имеет конечное количество ответов (как правило, в формате «да» или «нет»): есть ли на фотографии кот, является ли изображение человеческим лицом, болен ли пациент раком.

3)Задача кластеризации – распределение данных на группы: разделение всех клиентов мобильного оператора по уровню платёжеспособности, отнесение космических объектов к той или иной категории (планета, звёзда, чёрная дыра и т. п.).

4)Задача уменьшения размерности – сведение большого числа признаков к меньшему (обычно 2–3) для удобства их последующей визуализации (например, сжатие данных).

5)Задача выявления аномалий – отделение аномалий от стандартных случаев. На первый взгляд она совпадает с задачей классификации, но есть одно существенное отличие: аномалии – явление редкое, и обучающих примеров, на которых можно натаскать машинно обучающуюся модель на выявление таких объектов, либо исчезающе мало, либо просто нет, поэтому методы классификации здесь не работают. На практике такой задачей является, например, выявление мошеннических действий с банковскими картами.

1.3 Основные виды машинного обучения

Основная масса задач, решаемых при помощи методов машинного обучения, относится к двум разным видам: обучение с учителем (supervised learning) либо без него (unsupervised learning). Однако этим учителем вовсе не обязательно является сам программист, который стоит над компьютером и контролирует каждое действие в программе. «Учитель» в терминах машинного обучения – это само вмешательство человека в процесс обработки информации. В обоих видах обучения машине предоставляются исходные данные, которые ей предстоит проанализировать и найти закономерности. Различие лишь в том, что при обучении с учителем есть ряд гипотез, которые необходимо опровергнуть или подтвердить. Эту разницу легко понять на примерах.

Машинное обучение с учителем

Предположим, в нашем распоряжении оказались сведения о десяти тысячах московских квартир: площадь, этаж, район, наличие или отсутствие парковки у дома, расстояние от метро, цена квартиры и т. п. Нам необходимо создать модель, предсказывающую рыночную стоимость квартиры по её параметрам. Это идеальный пример машинного обучения с учителем: у нас есть исходные данные (количество квартир и их свойства, которые называются признаками) и готовый ответ по каждой из квартир – её стоимость. Программе предстоит решить задачу регрессии.

Ещё пример из практики: подтвердить или опровергнуть наличие рака у пациента, зная все его медицинские показатели. Выяснить, является ли входящее письмо спамом, проанализировав его текст. Это всё задачи на классификацию.

Машинное обучение без учителя

В случае обучения без учителя, когда готовых «правильных ответов» системе не предоставлено, всё обстоит ещё интереснее. Например, у нас есть информация о весе и росте какого-то количества людей, и эти данные нужно распределить по трём группам, для каждой из которых предстоит пошить рубашки подходящих размеров. Это задача кластеризации. В этом случае предстоит разделить все данные на 3 кластера (но, как правило, такого строгого и единственно возможного деления нет).

Если взять другую ситуацию, когда каждый из объектов в выборке обладает сотней различных признаков, то основной трудностью будет графическое отображение такой выборки. Поэтому количество признаков уменьшают до двух или трёх, и становится возможным визуализировать их на плоскости или в 3D. Это – задача уменьшения размерности.

1.4 Основные алгоритмы моделей машинного обучения

1. Дерево принятия решений

Это метод поддержки принятия решений, основанный на использовании древовидного графа: модели принятия решений, которая учитывает их потенциальные последствия (с расчётом вероятности наступления того или иного события), эффективность, ресурсозатратность.

Для бизнес-процессов это дерево складывается из минимального числа вопросов, предполагающих однозначный ответ — «да» или «нет». Последовательно дав ответы на все эти вопросы, мы приходим к правильному выбору. Методологические преимущества дерева принятия решений – в том, что оно структурирует и систематизирует проблему, а итоговое решение принимается на основе логических выводов.

2. Наивная байесовская классификация

Наивные байесовские классификаторы относятся к семейству простых вероятностных классификаторов и берут начало из теоремы Байеса, которая применительно к данному случаю рассматривает функции как независимые (это называется строгим, или наивным, предположением). На практике используется в следующих областях машинного обучения:

Всем, кто хоть немного изучал статистику, знакомо понятие линейной регрессии. К вариантам её реализации относятся и наименьшие квадраты. Обычно с помощью линейной регрессии решают задачи по подгонке прямой, которая проходит через множество точек. Вот как это делается с помощью метода наименьших квадратов: провести прямую, измерить расстояние от неё до каждой из точек (точки и линию соединяют вертикальными отрезками), получившуюся сумму перенести наверх. В результате та кривая, в которой сумма расстояний будет наименьшей, и есть искомая (эта линия пройдёт через точки с нормально распределённым отклонением от истинного значения).

Линейная функция обычно используется при подборе данных для машинного обучения, а метод наименьших квадратов – для сведения к минимуму погрешностей путем создания метрики ошибок.

4. Логистическая регрессия

Логистическая регрессия – это способ определения зависимости между переменными, одна из которых категориально зависима, а другие независимы. Для этого применяется логистическая функция (аккумулятивное логистическое распределение). Практическое значение логистической регрессии заключается в том, что она является мощным статистическим методом предсказания событий, который включает в себя одну или несколько независимых переменных. Это востребовано в следующих ситуациях:

Это целый набор алгоритмов, необходимых для решения задач на классификацию и регрессионный анализ. Исходя из того что объект, находящийся в N-мерном пространстве, относится к одному из двух классов, метод опорных векторов строит гиперплоскость с мерностью (N – 1), чтобы все объекты оказались в одной из двух групп. На бумаге это можно изобразить так: есть точки двух разных видов, и их можно линейно разделить. Кроме сепарации точек, данный метод генерирует гиперплоскость таким образом, чтобы она была максимально удалена от самой близкой точки каждой группы.

SVM и его модификации помогают решать такие сложные задачи машинного обучения, как сплайсинг ДНК, определение пола человека по фотографии, вывод рекламных баннеров на сайты.

Он базируется на алгоритмах машинного обучения, генерирующих множество классификаторов и разделяющих все объекты из вновь поступающих данных на основе их усреднения или итогов голосования. Изначально метод ансамблей был частным случаем байесовского усреднения, но затем усложнился и оброс дополнительными алгоритмами:

Кластеризация заключается в распределении множества объектов по категориям так, чтобы в каждой категории – кластере – оказались наиболее схожие между собой элементы.

Кластеризировать объекты можно по разным алгоритмам. Чаще всего используют следующие:

8. Метод главных компонент (PCA)

Метод главных компонент, или PCA, представляет собой статистическую операцию по ортогональному преобразованию, которая имеет своей целью перевод наблюдений за переменными, которые могут быть как-то взаимосвязаны между собой, в набор главных компонент – значений, которые линейно не коррелированы.

Практические задачи, в которых применяется PCA, – визуализация и большинство процедур сжатия, упрощения, минимизации данных для того, чтобы облегчить процесс обучения. Однако метод главных компонент не годится для ситуаций, когда исходные данные слабо упорядочены (то есть все компоненты метода характеризуются высокой дисперсией). Так что его применимость определяется тем, насколько хорошо изучена и описана предметная область.

9. Сингулярное разложение

В линейной алгебре сингулярное разложение, или SVD, определяется как разложение прямоугольной матрицы, состоящей из комплексных или вещественных чисел. Так, матрицу M размерностью [m*n] можно разложить таким образом, что M = UΣV, где U и V будут унитарными матрицами, а Σ – диагональной.

Одним из частных случаев сингулярного разложения является метод главных компонент. Самые первые технологии компьютерного зрения разрабатывались на основе SVD и PCA и работали следующим образом: вначале лица (или другие паттерны, которые предстояло найти) представляли в виде суммы базисных компонент, затем уменьшали их размерность, после чего производили их сопоставление с изображениями из выборки. Современные алгоритмы сингулярного разложения в машинном обучении, конечно, значительно сложнее и изощрённее, чем их предшественники, но суть их в целом нем изменилась.

10. Анализ независимых компонент (ICA)

Это один из статистических методов, который выявляет скрытые факторы, оказывающие влияние на случайные величины, сигналы и пр. ICA формирует порождающую модель для баз многофакторных данных. Переменные в модели содержат некоторые скрытые переменные, причем нет никакой информации о правилах их смешивания. Эти скрытые переменные являются независимыми компонентами выборки и считаются негауссовскими сигналами.

В отличие от анализа главных компонент, который связан с данным методом, анализ независимых компонент более эффективен, особенно в тех случаях, когда классические подходы оказываются бессильны. Он обнаруживает скрытые причины явлений и благодаря этому нашёл широкое применение в самых различных областях – от астрономии и медицины до распознавания речи, автоматического тестирования и анализа динамики финансовых показателей.

1.5 Примеры применения в реальной жизни

Пример 1. Диагностика заболеваний

Пациенты в данном случае являются объектами, а признаками – все наблюдающиеся у них симптомы, анамнез, результаты анализов, уже предпринятые лечебные меры (фактически вся история болезни, формализованная и разбитая на отдельные критерии). Некоторые признаки – пол, наличие или отсутствие головной боли, кашля, сыпи и иные – рассматриваются как бинарные. Оценка тяжести состояния (крайне тяжёлое, средней тяжести и др.) является порядковым признаком, а многие другие – количественными: объём лекарственного препарата, уровень гемоглобина в крови, показатели артериального давления и пульса, возраст, вес. Собрав информацию о состоянии пациента, содержащую много таких признаков, можно загрузить её в компьютер и с помощью программы, способной к машинному обучению, решить следующие задачи:

Пример 2. Поиск мест залегания полезных ископаемых

В роли признаков здесь выступают сведения, добытые при помощи геологической разведки: наличие на территории местности каких-либо пород (и это будет признаком бинарного типа), их физические и химические свойства (которые раскладываются на ряд количественных и качественных признаков).

Для обучающей выборки берутся 2 вида прецедентов: районы, где точно присутствуют месторождения полезных ископаемых, и районы с похожими характеристиками, где эти ископаемые не были обнаружены. Но добыча редких полезных ископаемых имеет свою специфику: во многих случаях количество признаков значительно превышает число объектов, и методы традиционной статистики плохо подходят для таких ситуаций. Поэтому при машинном обучении акцент делается на обнаружение закономерностей в уже собранном массиве данных. Для этого определяются небольшие и наиболее информативные совокупности признаков, которые максимально показательны для ответа на вопрос исследования – есть в указанной местности то или иное ископаемое или нет. Можно провести аналогию с медициной: у месторождений тоже можно выявить свои синдромы. Ценность применения машинного обучения в этой области заключается в том, что полученные результаты не только носят практический характер, но и представляют серьёзный научный интерес для геологов и геофизиков.

Пример 3. Оценка надёжности и платёжеспособности кандидатов на получение кредитов

С этой задачей ежедневно сталкиваются все банки, занимающиеся выдачей кредитов. Необходимость в автоматизации этого процесса назрела давно, ещё в 1960–1970-е годы, когда в США и других странах начался бум кредитных карт.

Лица, запрашивающие у банка заём, – это объекты, а вот признаки будут отличаться в зависимости от того, физическое это лицо или юридическое. Признаковое описание частного лица, претендующего на кредит, формируется на основе данных анкеты, которую оно заполняет. Затем анкета дополняется некоторыми другими сведениями о потенциальном клиенте, которые банк получает по своим каналам. Часть из них относятся к бинарным признакам (пол, наличие телефонного номера), другие — к порядковым (образование, должность), большинство же являются количественными (величина займа, общая сумма задолженностей по другим банкам, возраст, количество членов семьи, доход, трудовой стаж) или номинальными (имя, название фирмы-работодателя, профессия, адрес).

Для машинного обучения составляется выборка, в которую входят кредитополучатели, чья кредитная история известна. Все заёмщики делятся на классы, в простейшем случае их 2 – «хорошие» заёмщики и «плохие», и положительное решение о выдаче кредита принимается только в пользу «хороших».

Более сложный алгоритм машинного обучения, называемый кредитным скорингом, предусматривает начисление каждому заёмщику условных баллов за каждый признак, и решение о предоставлении кредита будет зависеть от суммы набранных баллов. Во время машинного обучения системы кредитного скоринга вначале назначают некоторое количество баллов каждому признаку, а затем определяют условия выдачи займа (срок, процентную ставку и остальные параметры, которые отражаются в кредитном договоре). Но существует также и другой алгоритм обучения системы – на основе прецедентов.

Источник

Я хочу изучать AI и машинное обучение. С чего мне начать?

Oct 10, 2018 · 8 min read

С чего начать учить машинное обучение. 1*OrD92D67K5F6MydZlRVONQ. С чего начать учить машинное обучение фото. С чего начать учить машинное обучение-1*OrD92D67K5F6MydZlRVONQ. картинка С чего начать учить машинное обучение. картинка 1*OrD92D67K5F6MydZlRVONQ. Благодаря машинному обучению программист не обязан писать инструкции, учитывающие все возможные проблемы и содержащие все решения. Вместо этого в компьютер (или отдельную программу) закладывают алгоритм самостоятельного нахождения решений путём комплексного использования статистических данных, из которых выводятся закономерности и на основе которых делаются прогнозы.

Когда-то я работал в Apple Store и мечтал изменить свою жизнь: вместо обслуживания техники Apple, мне хотелось ее создавать.

Я начал изучать машинное обучение (ML) и искусственный интеллект (AI), потому что на этом поприще творятся невероятные вещи. К тому же, эта область активно развивается.

Например, такое ощущение, что Google или Facebook каждую неделю выпускают новую технологию AI, чтобы ускорить работу или улучшить наш с вами пользовательский опыт.

И даже не будем затрагивать такую тему, как растущее число компаний по производству беспилотных автомобилей. Это отличная идея, но, к сожалению, я не поклонник вождения.

Несмотря на все вышеперечисленное, до сих пор не существует согласованного понятия искусственного интеллекта (AI).

Некоторые утверждают, что глубокое обучение можно рассматривать как AI, другие говорят, что это не AI, пока не пройден Тест Тьюринга.

Из-за отсутствия четкого определения, мой прогресс изрядно затормозился в начале. Было трудно разобраться в том, что не имело строгого определения.

С чего я начал?

Начнем с того, что, какое-то время назад, я и мои друзья запустили веб-стартап. Он провалился. В итоге мы сдались и не стали продолжать из-за бессмысленности идеи. Но во время работы над стартапом, я все больше и больше узнавал о таких вещах, как ML и AI.

Я не мог поверить в то, что компьютер может что-то учить для меня.

Через какое-то время я наткнулся на курс от Udacity под названием Deep Learning Nanodegree. На одном из промо-роликов я увидел забавного человека по имени Сирадж Раваль. Он заразил меня своей энергией и я записался на курс, несмотря на то, что совсем не отвечал основным требованиям (я ни разу не писал на Python).

За 3 недели до начала курса, я написал в Службу Поддержки Udacity, с вопросом об их политике возврата средств. Я боялся, что не смогу закончить курс.

Что же, мне не потребовался возврат, так как я закончил курс в установленный срок. Было действительно тяжело. Мои первые проекты были сданы с опозданием на четыре дня. Я шел вперед только из-за гордости от принятия участия в данном проекте.

Окончив Deep Learning Nanodegree, я гарантированно получал доступ к другим курсам Udacity, таким как AI Nanodegree, Self-Driving Car Nanodegree или Robotics Nanodegree.

Но я был растерян. Что делать дальше?

Мне нужен был учебный план. Я получил необходимые базовые знания с помощью Deep Learning Nanodegree, теперь пришло время выяснить, куда двигаться дальше.

Моя собственноручно созданная степень магистра по AI

Поэтому я сделал то, что сделал в самом начале своего пути — попросил своего наставника Google о помощи.

Я понял, что погрузился с головой в глубокое обучение без каких-либо знаний в этой области, вместо того, чтобы постепенно взбираться на верхушку айсберга под названием AI.

Просмотрев кучу курсов, я составил список самых интересных в Trello.

Я знал, что онлайн-курсы имеют высокий процент отсева, но я не собирался становиться частью этих отсеявшихся участников. У меня была миссия.

Чтобы привить себе ответственность, я решил делиться своими успехами и неудачами в Интернете. Помимо этого, там я мог бы найти других людей, которые заинтересованы в том же, что и я.

Я сделал доску Trello открытой и написал о своих начинаниях в блоге.

Мой учебный план немного изменился с тех пор, как я впервые написал его, но он по-прежнему актуален, и я посещаю доску Trello несколько раз в неделю, чтобы отслеживать свой прогресс.

Получение работы

Я следовал своему учебному плану вот уже более года, настало время на практике применить свои навыки. Поэтому я купил билет на самолет в один конец в США.

Мой план заключался в том, чтобы добраться до США и получить работу.

Однажды, девушка по имени Эшли написала мне на LinkedIn вот такое письмо: “Я видела твои посты и они на самом деле отличные, я думаю, тебе стоит встретиться с Майком”.

Я встретился с Майком и рассказал ему свою историю онлайн-обучения, о том как мне нравится Health Tech и о своих планах по переезду в США. Майк сказал мне: “Тебе лучше остаться тут на год или дольше, и посмотреть, что из этого выйдет. Кроме того, советую тебе встретиться с Кэмероном”.

Я встретился с Кэмероном и у нас был практически такой же диалог, что и с Майком. Health Tech, онлайн-обучение, США. Кэмерон сказал мне: “Мы с командой работаем над некоторыми проблемами в области здравоохранения, почему бы тебе не прийти к нам в четверг?”.

Настал четверг. Мои нервы были на пределе. Чтобы успокоиться, я вспомнил слова какого-то мудрого человека: нервное состояние — это то же самое, что и воодушевленное. Я перестал нервничать и переключился на нужное, в данной ситуации, состояние.

Весь день я знакомился с командой Max Kelsen.

Две недели спустя, Ник — генеральный директор, Атон — ведущий инженер по машинному обучению и я пошли за кофе.

“Ты хотел бы присоединиться к команде?” — спросил меня Ник.

“Конечно” — ответил я.

Билет в США мне не понадобился.

Делитесь своей работой

Я знаю, что онлайн-обучение не является традиционной формой обучения. Все специальности, к которым я обращался, требуют степени магистра или, по крайней мере, какую-то техническую степень.

Никакой степени у меня, естественно, не было. Но у меня были навыки, которые я получил, благодаря множеству онлайн-курсов.

Во время обучения, я делился своей работой в Интернете. Мой GitHub был заполнен проектами, которые я сделал, профиль на LinkedIn я забросил и стал делиться своими знаниями через YouTube и статьи на Medium.

Я никогда не писал резюме для Max Kelsen, потому что они и так уже все про меня знали из моего профиля на LinkedIn.

Моя публичная деятельность и была моим резюме.

Независимо от того, учитесь ли вы онлайн или получаете степень магистра, наличие портфолио с примерами ваших работ — отличный способ показать себя.

Да, навыки по ML и AI востребованы, но это не значит, что вам ничего не придется делать, чтобы получить работу. Продемонстрировать навыки придется, потому что даже гениальный продукт не будет продаваться, если его не поместить на видное место.

Создайте себе профиль на GitHub, Kaggle, LinkedIn или просто заведите блог — люди должны о вас как-то узнать. Кроме того, иметь собственный уголок в Интернете — очень весело.

Как начать?

На каких платформах учиться? Какие курсы лучше выбрать?

Однозначного ответа нет. Учебный процесс у всех складывается по-разному. Некоторые люди лучше учатся по книгам, другие по видео.

Важнее не то, как начать, а почему вы это начинаете.

Начните с определения причины.

Опять же, нет единственно верной причины. Все они верны по-своему.

Наличие “почему” означает, что в трудные времена у вас будет к чему обратиться за помощью, чтобы напомнить себе, почему вы все это затеяли.

Определили свое “почему”? Хорошо. Пришло время перейти к самой трудной части.

Я могу рекомендовать только то, что сам пробовал.

Вот курсы, которые я окончил (по порядку):

Я лучше воспринимаю визуальную информацию, то есть когда мне наглядно показывают и объясняют разные вещи. Все эти курсы заточены на таких как я.

Если вы абсолютный новичок, начните с вводных курсов по Python, а затем, когда станете более уверены в своих знаниях, переходите к data science, машинному обучению и AI.

Нужны ли углубленные знания по математике?

Самый высокий уровень математического образования, который я получил, был еще в старшей школе. Остальное я узнал через Khan Academy, поскольку эти знания были мне необходимы.

Существует большое количество мнений по поводу того, какой уровень знаний по математике нужно иметь, чтобы попасть в сферу машинного обучения и AI. Я поделюсь с вами своим мнением.

Если вы хотите применить знания ML и методы AI к какой-либо проблеме, вам не обязательно нужно иметь глубокое понимание математики, чтобы достичь хорошего результата.

Такие библиотеки, как TensorFlow и PyTorch позволяют создавать, при небольшом знании Python, современные модели, в то время как математика делает основную работу за кулисами.

Если же вы собираетесь углубиться в машинное обучение и AI, поступив в университет или куда-то еще, глубокие знания по математике играют наиважнейшую роль.

Лично я не собираюсь углубляться в математику и улучшать производительность алгоритма на 10%. Оставлю это людям, которые умнее меня.

Вместо этого, я буду использовать доступные мне библиотеки и манипулировать ими как мне угодно, чтобы решать проблемы по своему усмотрению.

Что на самом деле делает специалист по машинному обучению?

То, что специалист по машинному обучению делает на практике, может оказаться совсем не тем, о чем вы думаете.

Например, несмотря на распространенный факт, мы не работаем с роботами, у которых красные и страшные глаза.

Вот несколько вопросов, которые ежедневно задает себе специалист по ML:

Я позаимствовал эти вопросы из замечательной статьи Рейчел Томас, одной из основательниц fast.ai.

Кроме того, я снял видео о том, чем мы занимаемся по понедельникам в Max Kelsen.

Нет однозначно верного пути

Не существует правильного или неправильного способа попасть в сферу ML или AI.

Самое прекрасное в этой сфере то, что у нас есть доступ к одним из передовых технологий в мире, и все, что нам нужно сделать — это научиться правильно их использовать.

Вы можете начать с изучения Python.

Вы можете начать с изучения исчисления и статистики.

Вы можете начать с изучения философии принятия решений.

Машинное обучение и AI привлекает меня именно тем, что тут сходится так много разнообразных областей.

Чем больше я узнаю, тем больше еще остается узнать. И это подстегивает меня двигаться вперед.

Когда мой код не запускается или я не понимаю концепцию, я временно прекращаю работу. Я сдаюсь, позволяя себе уйти от проблемы, немного вздремнуть или сходить на прогулку. Когда я возвращаюсь со свежей головой, я смотрю на проблему под другим углом. Воодушевление возвращается и я продолжаю учиться.

Начните свое обучение с того, что вам больше всего по душе. Если это приведет вас в тупик, вернитесь назад и выберите другой путь.

Компьютеры умны, но они все еще не могут учиться самостоятельно. Им нужна ваша помощь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *