С помощью теоремы чевы докажите что высоты треугольника пересекаются в одной точке
Теорема о пересечении высот треугольника
Теорема
Доказательство
Доказать: АА1, ВВ1 и СС1 пересекаются в одной точке.
Доказательство:
Проведём через каждую вершину 
Получим 



Замечательные точки треугольника : точка пересечения медиан, точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам и точка пересечения высот (или их продолжений).
Поделись с друзьями в социальных сетях:
Теорема Чевы: формулировка и пример с решением
В данной публикации мы рассмотрим одну из классических теорем аффинной геометрии – теорему Чевы, которая получила такое название в честь итальянского инженера Джованни Чевы. Также разберем пример решения задачи, чтобы закрепить представленный материал.
Формулировка теоремы
Дан треугольник ABC, в котором каждая вершина соединена с точкой на противоположной стороне.
Таким образом, мы получаем три отрезка (AA’, BB’ и CC’), которые называются чевианами.
Данные отрезки пересекаются в одной точке тогда и только тогда, когда выполняется следующее равенство:
Теорему можно, также, представить в таком виде (определяется, в каком соотношении точки делят стороны):
Тригонометрическая теорема Чевы
Примечание: все углы – ориентированные.
Пример задачи
Дан треугольник ABC с точками A’, B’ и C’ на сторонах BC, AC и AB, соответственно. Вершины треугольника соединены с данным точками, и образованные отрезки проходят через одну точку. При этом точки A’ и B’ взяты на серединах соответствующих противоположных сторон. Выясните, в каком соотношении точка C’ делит сторону AB.
Решение
Нарисуем чертеж согласно условиям задачи. Для нашего удобства примем следующие обозначения:
Остается только составить соотношение отрезков согласно теореме Чевы и подставить в него принятые обозначения:
После сокращения дробей получаем:
Значит, AC’ = C’B, т.е. точка C’ делит сторону AB пополам.
Следовательно, в нашем треугольнике отрезки AA’, BB’ и CC’ являются медианами. Решив задачу мы доказали, что они пересекаются в одной точке (справедливо для любого треугольника).
Примечание: с помощью теоремы Чевы можно доказать, что в треугольнике в одной точке, также, пересекаются биссектрисы или высоты.
Теоремы Чевы и Менелая – одни из базовых основ планиметрии и геометрии, которым репетиторы и школьные учителя уделяют особое внимание, а ученикам задают писать научные доклады и рефераты на эту тему в качестве домашнего задания.
Их изучение рекомендуется не только в том случае, если вы – математик, но и в помощь ученикам старшего уровня (по уровню сложности может подойти и любой средний класс) и студентам профильных специальностей, которые всерьёз интересуются данной наукой.
Именно для этого мы подготовили данный материал. В нем вы узнаете, чем интересны данные основы, принципы их доказательств и рассмотрите решения некоторых задач из ЕГЭ.
Формулировка теоремы Менелая
Менелай Александрийский — древнегреческий математик и астроном, живший в I в. Большой вклад внес в развитие сферической тригонометрии, где для получения формул использовал именно эту теорему, которую теперь изучают все школьники.
Прежде чем приступить к проработке, сделаем соответствующий рисунок.
Что мы имеем? Треугольник ABC и прямую, которая пересекает две его стороны и продолжение третьей стороны.
Особенность теоремы заключается и в том, что приведённый рисунок чаще всего встречается в заданиях формата ЕГЭ. Это – весьма распространённая геометрическая конструкция, когда какая-то прямая таким образом пересекает треугольник.
Если мы видим приведённый выше рисунок, можно записать формулу:
Доказательство теоремы
Для доказательства теоремы Менелая проведём через точку C прямую, параллельную AB, таким образом:
Обозначим точку пересечения данной прямой с B1C1 через точку D.
В таком случае мы получим несколько пар подобных треугольников.
Сторона CD параллельна AB. Тогда первой парой подобных треугольников будут треугольники B1CD и B1AC1. Они подобны по второму признаку подобия треугольников, то есть по двум пропорциональным сторонам и углу B1 между ними.
Углы B1CD и B1AC1 равны как соответственные при параллельных прямых CD, AB и секущей AC.
Анализируя данную пару подобных треугольников, можно записать условие пропорциональности сходственных сторон, а именно:
Так как сторона CD не является составляющей исходного равенства, для дальнейшего доказательства её нужно выразить.
Используя описанное равенства, применив свойства пропорции, запишем:
Запишем следующую пару подобных треугольников: треугольники CDA1 и BC1A1 подобны, так как углы CA1D и BA1C1 равны как вертикальные. Кроме этого, угол CDA1 равен углу BC1A1, как накрест лежащие при параллельных прямых CD, AB и секущей C1D.
Покажем это на рисунке:
Из данного подобия можно записать некоторую пропорциональность сходственных сторон:
Осталось лишь приравнять. Дроби, с помощью которых мы выразили CD – равны.
Таким образом получаем:
Умножив обе дроби на часть, обратную левой дроби, мы получили исходное равенство:
Что и требовалось доказать.
Формулировка теоремы Чевы
Джованни Чева — итальянский математик, инженер. Годы жизни 1648 — 1734 гг. Основные труды ученого в области геометрии и механики.
Рассматриваемая теорема была доказана ученым в 1678 г.
Рассмотрим приведённый ниже рисунок:
Теорема звучит так: любые произвольные отрезки, выходящие из вершин треугольника, (но с одним условием: они должны пересекаться в одной точке) делят противолежащие этим вершинам стороны таким образом, что истинно равенство:
В честь ученого, доказавшего эту теорему, данные отрезки называют «чевианами».
Доказательство теоремы
Итак, мы имеем треугольник ABC и произвольные чевианы AA1 и BB1.
Третья чевиана CC1 обязательно должна проходить через точку пересечения первых двух. При этом получается, что:
Обозначим за O точку пересечения данных прямых.
Продлим медиану BB1.
Проведём перпендикуляры из вершин A и С таким образом:
Треугольники AKB1 и CNB1 подобны по острому углу.
Теперь перемножим равенства:
что и требовалось доказать.
Применение теорем Чевы и Менелая при решении задач ЕГЭ
Теорема Менелая (как и обратная) применима и в первой части экзаменационного бланка, и в 16-м задании. Рассмотрим пару таких задач.
Задача 1
Дан треугольник ABC (см. рисунок ниже) с продолжением стороны CA. Также проведены медианы BM и AN. Точку их пересечения обозначим за O.
Возьмём точку K на стороне AB, такую, что AK относится к AB, как 1/3.
Проведём прямую OK до пересечения со стороной AC. Точку их пересечения обозначим за P.
Сторону AP обозначим за y.
Найти: чему равен отрезок AP.
Так как отношение сторон AB и AK равно 1/3, следовательно, AK = x, а KB = 3x.
Рассмотрим треугольник ABM. Для него берём прямую OP.
Таким образом мы нашли искомые точки P, A, M, O, K и B.
Запишем теорему Менелая к данному рисунку.
Подставляем в это соотношение известные данные:
В итоге мы получаем, что y = 4.
Ответ: отрезок AP = 4 см.
Задача 2
Задача, связанная со свойствами теоремы Чевы.
сумма AB и BC равна 13;
Найти: отношение BO и OB1.
Итак, запишем отношение:
Конечным результатом является дробь 13/8.
Обобщающий урок «Теоремы Менелая и Чевы»
Разделы: Математика
Оборудование: мультимедийный проектор. Приложение 1.
1. Организационный момент.
Точка С1 делит сторону АВ треугольника АВС в отношении 2 : 1. точка В1 лежит на продолжении стороны АС за точку С, и АС = СВ1. В каком отношении делит прямая В1 С1 сторону ВС? (на слайде 2).
Решение: По условию

В треугольнике АВС АD – медиана, точка О – середина медианы. Прямая ВО пересекает сторону АС в точке К.
В каком отношении точка К делит АС, считая от точки А? (на слайде 3).
В треугольнике АВС на стороне ВС взята точка N так, что NС = 3ВN; на продолжении стороны АС за точку А взята точка М так, что МА = АС. Прямая МN пересекает сторону АВ в точке F. Найдите отношение 
Решение: По условию задачи МА = АС, NС = 3 ВN. Пусть МА = АС = b, BN = k, NC = 3k. Прямая МN пересекает две стороны треугольника АВС и продолжение третьей. По теореме Менелая
На стороне PQ треугольника PQR взята точка N, а на стороне РR – точка L, причем NQ = LR. Точка пересечения отрезков QL и NR делит QR в отношении m : n, считая от точки Q. Найдите PN : PR. (на слайде 5).
Решение: По условию NQ = LR, 
3. Отработка практических навыков.
Докажите теорему: Медианы треугольника пересекаются в одной точке; точка пересечения делит каждую из них в отношении 2 : 1, считая от вершины. (рисунок 1 слайд 6).
Доказательство: Пусть АМ1, ВМ2, СМ3 – медианы треугольника АВС. Чтобы доказать, что эти отрезки пересекаются в одной точке, достаточно показать, что 
Итак, доказано, что медианы треугольника пересекаются в одной точке.
Пусть О – точка пересечения медиан. Прямая М3С пересекает две стороны треугольника АВМ2 и продолжение третьей стороны этого треугольника. По теореме Менелая


Рассматривая теорему Менелая для треугольников АМ1С и АМ2С, мы получаем, что

Докажите теорему: Биссектрисы треугольника пересекаются в одной точке. (рисунок 2 слайд 6).
Доказательство: Достаточно показать, что 


Докажите теорему: Высоты остроугольного треугольника пересекаются в одной точке. (рисунок 3 слайд 6).
Доказательство: Пусть АН1, АН2, АН3 – высоты треугольника АВС со сторонами a, b, c. Из прямоугольных треугольников АВН2 и ВСН2 по теореме Пифагора выразим, соответственно, квадрат общего катета ВН2, обозначив АН2 = х, СН2 = b – х.
Итак, АН2 = 

Аналогично рассуждая для прямоугольных треугольников АСН2 и ВСН3, ВАН1 и САН1, получим АН3 = 


СН1 = 
Для доказательства теоремы достаточно показать, что 
Задачи 5 – 7 самостоятельное решение 3 учащихся. (чертежи на экране).
2. остальные:
Докажите теорему: Если в треугольник вписана окружность, то отрезки, соединяющие вершины треугольника с точками касания противоположных сторон пересекаются в одной точке. (на рисунке 4 слайд 6).
Доказательство: Пусть А1, В1 и С1 – точки касания вписанной окружности треугольника АВС. Для того, чтобы доказать, что отрезки АА1, ВВ1 и СС1 пересекаются в одной точке, достаточно показать, что выполняется равенство Чевы:


3. Разбор задач 5, 6, 7.
Пусть АD – медиана треугольника АВС. На стороне АD взята точка К так, что АК : КD = 3 : 1. Прямая ВК разбивает треугольник АВС на два. Найдите отношение площадей этих треугольников. (на слайде 7 рисунок 1)
Решение: Пусть АD = DC = a, KD = m, тогда АК = 3m. Пусть Р – точка пересечения прямой ВК со стороной АС. Необходимо найти отношение 






В треугольнике АВС, описанном около окружности, АВ = 8, ВС = 5, АС = 4. А1 и С1 – точки касания, принадлежащие соответственно сторонам ВС и ВА. Р – точка пересечения отрезков АА1 и СС1. Точка Р лежит на биссектрисе ВВ1. Найдите АР : РА1.
(на слайде 7 рисунок 2)
Решение: Точка касания окружности со стороной АС не совпадает с В1, так как треугольник АВС – разносторонний. Пусть С1В = х, тогда, используя свойство касательных, проведенных к окружности из одной точки, введем обозначения (см рисунок) 8 – х + 5 – х = 4, х = 
В треугольнике АВА1 прямая С1С пересекает две его стороны и продолжение третьей стороны. По теореме Менелая 
Стороны треугольника 5, 6 и 7. Найдите отношение отрезков, на которые биссектриса большего угла этого треугольника разделена центром окружности, вписанной в треугольник. (на слайде 7).
Решение: Пусть в треугольнике АВС АВ = 5, ВС = 7, АС = 6. Угол ВАС лежит против большей стороны в треугольнике АВС, значит, угол ВАС – больший угол треугольника. Центр вписанной окружности треугольника лежит на пересечении биссектрис. Пусть О – точка пересечения биссектрис. Необходимо найти АО : ОD. Так как АD – биссектриса треугольника АВС, то 


4. Самостоятельное решение задач 9, 10, 11. – 3 учащихся.
Задача 12 (для всех оставшихся учащихся класса):
Биссектрисы ВЕ и АD треугольника АВС пересекаются в точке Q. Найдите площадь треугольника АВС, если площадь треугольника BQD = 1, 2АС = 3 АВ, 3ВС = 4 АВ. (рисунок 4 на слайде 7).
Треугольники АВС и ВЕС имеют равные высоты, проведенные из вершины В, значит, 

5. Разбор задач 9, 10, 11.
Решение задач – практикум:
А. На сторонах ВС, СА, АВ равнобедренного треугольника АВС с основанием АВ взяты точки А1, В1, С1, так что прямые АА1, ВВ1, СС1 – конкурентные.
Докажите, что
По теореме Чевы имеем: 

Что и требовалось доказать.
По теореме Менелая для треугольника АВС и секущей MN имеем:



Для треугольника MNC и секущей АВ по теореме Менелая имеем: 
8. Самостоятельное решение задач: 1 вариант:
1. На продолжениях сторон АВ, ВС, АС треугольника АВС взяты соответственно точки С1, А1, В1 так, что АВ = ВС1, ВС = СА1, СА = АВ1. Найдите отношение в котором прямая АВ1 делит сторону А1С1 треугольника А1В1С1. (3 балла).
2. На медиане СС1 треугольника АВС взята точка М. Прямые АМ и ВМ пересекают стороны треугольника соответственно в точках А1 и В1. Докажите, что прямые АВ и А1В1 параллельны. (3 балла).
3. Пусть на продолжении сторон АВ, ВС и АС треугольника АВС взяты соответственно точки С1, А1 и В1. Докажите, что точки А1, В1, С1 лежат на одной прямой тогда и только тогда, когда выполняется равенство 
4. Используя теорему Чевы, докажите, что высоты треугольника или их продолжения пересекаются в одной точке. (4 балла).
5. Докажите, что прямые, проходящие через вершины треугольника и точки касания вневписанных окружностей, пересекаются в одной точке (точке Нагеля). (Окружность называется вневписанной в треугольник, если она касается одной стороны этого треугольника и продолжений двух других его сторон). (5 баллов).
6. Пусть на сторонах АВ, ВС и АС треугольника АВС взяты соответственно точки С1, А1 и В1 так, что прямые АА1, ВВ1, СС1 пересекаются в точке О. Докажите, что выполняется равенство 
7. Пусть на ребрах АВ, ВС, СD и АD тетраэдра АВСD взяты соответственно точки А1, В1, С1, D1. Докажите, что точки А1, В1, С1, D1 лежат в одной плоскости тогда и только тогда, когда выполняется равенство 
1. Точки А1 и В1 делят стороны ВС и АС треугольника АВС в отношениях 2 : 1 и 1 : 2. Прямые АА1 и ВВ1 пересекаются в точке О. Площадь треугольника АВС равна 1. Найдите площадь треугольника ОВС. (3 балла).
2. Отрезок МN, соединяющий середины сторон АD и ВС четырехугольника АВСD делится диагоналями на три равные части. Докажите, что АВСD – трапеция, одно из оснований АВ или СD, которое в двое больше другого. (3 балла).
3. Пусть на стороне АВ и продолжении сторон ВС и АС треугольника АВС взяты соответственно точки С1, А1 и В1. Докажите, что прямые АА1, ВВ1, СС1 пересекаются в одной точке или параллельны тогда и только тогда, когда выполняется равенство 
4. Используя теорему Чевы, докажите, что высоты треугольника или их продолжения пересекаются в одной точке. (4 балла).
5. Докажите, что прямые, проходящие через вершины треугольника и точки касания вневписанных окружностей, пересекаются в одной точке (точке Нагеля). (Окружность называется вневписанной в треугольник, если она касается одной стороны этого треугольника и продолжений двух других его сторон). (5 баллов).
6. Пусть на сторонах АВ, ВС и АС треугольника АВС взяты соответственно точки С1, А1, В1 так, что прямые АА1, ВВ1 и СС1 пересекаются в точке О. Докажите, что выполняется равенство 
7. Пусть на ребрах АВ, ВС, СD и АD тетраэдра АВСD взяты соответственно точки А1, В1, С1, D1. Докажите, что точки А1, В1, С1, D1 лежат в одной плоскости тогда и только тогда, когда выполняется равенство 
9. Домашнее задание: учебник § 3, № 855, № 861, № 859.





















































