С помощью чего меняется порядок вычислений в python
Python. Урок 4. Арифметические операции
Язык Python, благодаря наличию огромного количества библиотек для решения разного рода вычислительных задач, сегодня является конкурентом таким пакетам как Matlab и Octave. Запущенный в интерактивном режиме, он, фактически, превращается в мощный калькулятор. В этом уроке речь пойдет об арифметических операциях, доступных в данном языке.
Арифметические операции будем изучать применительно к числам, причем работу с комплексными числами разберем отдельно. Также, кратко остановимся на битовых операциях, представлении чисел в разных системах исчисления и коснемся библиотеки math.
Как было сказано в предыдущем уроке, посвященном типами и модели данных Python, в этом языке существует три встроенных числовых типа данных:
Если в качестве операндов некоторого арифметического выражения используются только целые числа, то результат тоже будет целое число. Исключением является операция деления, результатом которой является вещественное число. При совместном использовании целочисленных и вещественных переменных, результат будет вещественным.
Арифметические операции с целыми и вещественными числами
Все эксперименты будем производить в Python, запущенном в интерактивном режиме.
Складывать можно непосредственно сами числа…
либо переменные, но они должны предварительно быть проинициализированы.
Результат операции сложения можно присвоить другой переменной…
либо ей же самой, в таком случае можно использовать полную или сокращенную запись, полная выглядит так
Все перечисленные выше варианты использования операции сложения могут быть применены для всех нижеследующих операций.
Получение целой части от деления.
Получение остатка от деления.
Возведение в степень.
Работа с комплексными числами
Для создания комплексного числа можно использовать функцию complex(a, b), в которую, в качестве первого аргумента, передается действительная часть, в качестве второго – мнимая. Либо записать число в виде a + bj.
Рассмотрим несколько примеров.
Создание комплексного числа.
Комплексные числа можно складывать, вычитать, умножать, делить и возводить в степень.
У комплексного числа можно извлечь действительную и мнимую части.
Для получения комплексносопряженного число необходимо использовать метод conjugate().
Битовые операции
В Python доступны битовые операции, их можно производить над целыми числами.
Побитовое Исключающее ИЛИ (XOR).
Сдвиг вправо и влево.
Представление чисел в других системах счисления
В своей повседневной жизни мы используем десятичную систему исчисления, но при программирования, очень часто, приходится работать с шестнадцатеричной, двоичной и восьмеричной.
Представление числа в шестнадцатеричной системе
Представление числа в восьмеричной системе
Представление числа в двоичной системе
Библиотека (модуль) math
В стандартную поставку Python входит библиотека math, в которой содержится большое количество часто используемых математических функций.
Для работы с данным модулем его предварительно нужно импортировать.
Рассмотрим наиболее часто используемые функции.
math.ceil(x)
Возвращает ближайшее целое число большее, чем x.
math.fabs(x)
Возвращает абсолютное значение числа.
math.factorial(x)
Вычисляет факториал x.
math.floor(x)
Возвращает ближайшее целое число меньшее, чем x.
math.exp(x)
math.log2(x)
Логарифм по основанию 2.
math.log10(x)
Логарифм по основанию 10.
math.log(x[, base])
По умолчанию вычисляет логарифм по основанию e, дополнительно можно указать основание логарифма.
math.pow(x, y)
Вычисляет значение x в степени y.
math.sqrt(x)
Корень квадратный от x.
Тригонометрические функции, их мы оставим без примера.
math.cos(x)
math.sin(x)
math.tan(x)
math.acos(x)
math.asin(x)
math.atan(x)
И напоследок пару констант.
math.pi
math.e
Помимо перечисленных, модуль math содержит ещё много различных функций, за более подробной информацией можете обратиться на официальный сайт.
P.S.
Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. На нашем сайте вы можете найти вводные уроки по этой теме. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”. 
>>
Математические вычисления в Python 3
Программирование невозможно представить без работы с числами. Размеры экрана, выбор цвета путем присвоения числовых кодов, географическое расположение, деньги и очки, продолжительность видео – для всего этого используются числа.
Потому умение выполнять математические операции очень важно для программирования. Конечно, чем выше у вас навык математических вычислений, тем лучше для вас; однако совсем не обязательно уметь выполнять сложнейшие вычисления, чтобы быть хорошим программистом. Если у вас нет опыта работы в области математики, старайтесь представлять математику как инструмент или как способ улучшить ваше логическое мышление.
Данное руководство научит вас работать с двумя наиболее распространёнными числовыми типами данных Python:
Операторы Python
Оператор – это символ или функция, которая выполняет то или иное действие над данными. К примеру, символ + – это оператор сложения.
В Python присутствуют как общие, так и специальные математические операторы.
Ниже приведена таблица наиболее распространённых математических операторов Python.
| Операция | Результат |
| x + y | Сложение (сумма x и y) |
| x – y | Вычитание (разница между x и y) |
| -x | Смена знака x |
| +x | Тождественность x |
| x * y | Умножение x на y |
| x / y | Деление x на y |
| x // y | Получение целой части от деления x на y |
| x % y | Остаток от деления x / y |
| x ** y | Возведение в степень |
Также руководство охватывает использование операторов присваивания.
Сложение и вычитание
Операции сложения и вычитания в Python выполняются точно так же, как и в обычной математике. Вы даже можете использовать Python вместо калькулятора.
Также вы можете объявить переменные и указать их в функции print:
a = 88
b = 103
print(a + b)
191
Целые числа бывают положительными и отрицательными. Попробуйте сложить следующие числа:
Числа с плавающей точкой складываются аналогичным образом:
e = 5.5
f = 2.5
print(e + f)
8.0
В результате сложения чисел с плавающей точкой также получается число с плавающей точкой, потому Python выводит 8.0, а не 8.
Синтаксис вычитания отличается от сложения только оператором. Попробуйте отнять 32 из 75.67:
Примечание: Если в операции присутствует хотя бы одно число с плавающей точкой, в результате Python также выведет число с плавающей точкой.
Унарные арифметические операции
Унарное математическое выражение состоит только из одного компонента или элемента. В Python плюс и минус вместе со значением могут быть использованы в качестве одного элемента, это позволяет показать тождественность значения (+) или изменить его знак (-).
Тождественность используется нечасто. Плюс можно использовать с положительными числами:
Если вы используете плюс с отрицательным числом, он также вернёт тождественное (в этом случае – отрицательное) число.
Минус позволяет изменить знак. Если вы добавите минус к положительному значению, в результате будет отображено отрицательное значение:
Если добавить минус к отрицательному значению, в результате получится положительное число:
Умножение и деление
Операции умножения и деления, как сложение и вычитание, выполняются в Python так же, как в обычной математике. Для умножения Python использует *, для деления – /.
k = 100.1
l = 10.1
print(k * l)
1011.0099999999999
При делении в Python 3 частное всегда возвращается в виде числа с плавающей точкой, даже если вы делите целые числа:
m = 80
n = 5
print(m / n)
16.0
Это одно из главных различий между Python 2 и Python 3. Python 3 возвращает дробный результат, потому при делении 11 на 2 вы получите 5.5. В Python 2 деление привязано к типам данных, потому при делении целого числа невозможно получить число с плавающей точкой; поэтому при делении 11 на 2 Python 2 возвращает 5.
Читайте также: Python 2 vs Python 3
Когда числа по обе стороны символа деления являются целыми, выполняется деление floor, то есть, для фактора х Python 2 возвращает наибольшее целое число меньше или равное х. К примеру, при делении 5 / 2 таким числом будет 2.
Чтобы выполнить деление floor и получить только целую часть числа, Python 3 использует оператор //. К примеру, разделив 100//40, вы получите 2.
Деление по модулю
Оператор % – это модуль, который возвращает остаток от деления. К примеру, это позволяет найти числа, кратные одному и тому же числу.
o = 85
p = 15
print(o % p)
10
При делении 85 на 15 получается 5 и 10 в остатке.
Попробуйте разделить числа с плавающей точкой:
q = 36.0
r = 6.0
print(o % p)
0.0
Число 36.0 делится на 6.0 без остатка, потому в результате получился 0.0.
Возведение в степень
Оператор ** в Python возводит число в степень. Например, выражение 5 ** 3 значит, что 5 нужно возвести в третью степень. В математике это выглядит так: 5³. В Python можно получить тот же результат (125), умножив 5*5*5.
s = 52.25
t = 7
print(s ** t)
1063173305051.292
Приоритет операций
Как и в математике, в Python нужно помнить о том, что операции выполняются в порядке их приоритета, а не по порядку справа налево.
Сначала выполняется умножение (10*5=50), а затем сложение (10+50). Потому результат будет такой:
Чтобы сначала выполнить операцию сложения, а затем умножить полученный результат на 5, нужно взять сложение в скобки:
u = (10 + 10) * 5
print(u)
100
Математические операции имеют такой приоритет:
Операторы присваивания
Наиболее распространённым оператором присваивания является знак равенства (=). Он присваивает переменной слева значение справа. К примеру, в выражении v = 23 переменной v было присвоено значение 23.
В программировании часто используются составные операторы присваивания, которые выполняют операцию со значением переменной, а затем присваивают этой переменной полученное новое значение. Составные операторы объединяют арифметический оператор с оператором =. Например:
Составной оператор += выполнил сложение, а затем присвоил переменной w, значение, полученное в результате сложения.
Составные операторы часто используются в циклах.
for x in range (0, 7):
x *= 2
print(x)
0
2
4
6
8
10
12
Это позволяет автоматизировать процесс умножения чисел в заданном диапазоне.
В Python есть составные операторы присваивания для каждой математической операции:
Операторы присваивания позволяют постепенно увеличить или уменьшить значение, а также автоматизировать некоторые вычисления.
Заключение
Теперь вы умеете выполнять вычисления в Python. Читайте также:
Целочисленная арифметика¶
Видео¶
Основные определения¶
Специальный символ, выполняющий арифметические вычисления. В выражении a * b символ * — оператор умножения, a и b — его операнды.
Свойство оператора, влияющее на очередность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления.
Например, результат выражения 2 + 2 * 2 — 6, поскольку приоритет операции умножения выше, чем приоритет операции сложения. Изменить порядок вычислений в выражении можно с помощью скобок:
последовательность выполнения операций (или направление вычисления), реализуемая когда операции имеют одинаковый приоритет и отсутствует явное (с помощью скобок) указание на очерёдность их выполнения.
Пример оператора с правой ассоциативностью — оператор возведения в степень:
Арифметические операторы¶
В таблице приведены некоторые арифметические операторы языка Python в порядке уменьшения приоритета (операторы с наибольшим приоритетом расположены выше).
Возведение в степень
Унарные плюс и минус
Сложение и вычитание
Целочисленное деление и взятие остатка от деления¶
Эти операции полезны при вычислениях с отдельными разрядами чисел.
Функции перевода чисел в различные системы счисления¶
Функции принимают целое число и возвращают его строковое представление в двоичной, восьмеричной и шестнадцатеричной системах счисления соответственно.
С этой функцией мы познакомились на прошлом занятии. Сейчас дополним, что вторым аргументом она может принимать основание системы счисления, в которой записано число x :
Задачи¶
Дано целое десятичное число. Выведите его последнюю цифру.
Дано целое десятичное число. Найдите число десятков в его десятичной записи.
Дано трехзначное число. Найдите сумму его цифр.
Пирожок в столовой стоит \(a\) рублей и \(b\) копеек. Определите, сколько рублей и копеек нужно заплатить за \(n\) пирожков.
Приложение запрашивает у пользователя стоимость одного пирожка и количество пирожков. Пример:
Приложение должно вычислить стоимость запрошенного количества пирожков. Пример вывода:
Дополнительные задачи¶
В школе решили набрать три новых математических класса. Так как занятия по математике у них проходят в одно и то же время, было решено выделить кабинет для каждого класса и купить в них новые парты. За каждой партой может сидеть не больше двух учеников. Известно количество учащихся в каждом из трёх классов. Сколько всего нужно закупить парт чтобы их хватило на всех учеников? Программа получает на вход три целых десятичных числа: количество учащихся в каждом из трех классов.
4. Доработайте код задачи № 3 таким образом, чтобы он запрашивал время начала занятий (минуты и часы отдельно) и номер урока, а далее также рассчитывал время окончания уроков.
5. Пользователь вводит число и систему счисления этого числа. Программа переводит число в десятичную, двоичную, восьмеричную и шестнадцетеричную системы счисления с использованием стандартных функций. Пример вывода:
Домашнее задание¶
Дано трехзначное число. Найти произведение его цифр.
Даны значения двух моментов времени, принадлежащих одним и тем же суткам: часы, минуты и секунды для каждого из моментов времени. Известно, что второй момент времени наступил не раньше первого. Определите, сколько секунд прошло между двумя моментами времени.
Вычисления в python
Арифметические операции в python
Начнём со всем знакомой четверки:
print ( 10 / 2 )
# 5.0
print ( 100 / 3 )
# 33.333333333333336
print ( 21 / 4 )
# 5.25
print ( 23 / 7 )
# 3.2857142857142856
А как обстоит дело с дробями? Точно также:
0.75 = 0.5 + 0.25 = 1/2 + 1/4 = 0.11
Возникает вопрос, как перевести в двоичную систему такие дроби: 1/3
Это может продолжаться бесконечно долго. Поэтому python прерывает выполнение таких вычислений и часто выдает такие приколы:
print ( 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 )
# 0.7999999999999999
print ( 0.1 + 0.2 )
# 0.30000000000000004
print ( 7 / 3 )
# 2.3333333333333335
Еще немного математики. Математика в каждый дом!
# Остаток от деления
print ( 11 % 4 )
# 3
print ( 101 % 7 )
# 3
print ( 34 % 5 )
# 4
# Деление нацело
print ( 20 // 4 )
# 5
print ( 129 // 11 )
# 11
print ( 100 // 61 )
# 1
Операции сравнения в python
# Операция равенства: True, если X равен Y
print ( 10 == 10 )
# True
print ( 666 == 661 )
# False
# Операция больше: True, если X больше Y
print ( 120 > 2 )
# True
print ( 1000 > 1999 )
# False
# Операция меньше: True, если X меньше Y
print ( 121 120 )
# False
print ( 0 1 )
# True
# Операция меньше или равно: True, если X меньше или равен Y
print ( 6 6 )
# True
print ( 5 2 )
# False
# Операция больше или равно: True, если X больше или равен Y
print ( 1000 >= 10000 )
# False
print ( 9999 >= 9999 )
# False
Логические операции в python
# Оператор «and» или конъюнкция.
# True, если и выражение X, и выражение Y равны True
print ( 10 == 10 and 10 > 2 )
# True
print ( 666 == 661 and 9 > 0 )
# False
# Оператор «or» или дизъюнкция.
# True, если или выражение X, или выражение Y равны True
print ( 666 == 661 or 9 > 0 )
# True
print ( 666 == 661 or 9 0 )
# False
# Оператор «not» или инверсия меняет значение на противоположное.
# True, если выражение X равно False
print ( not 120 > 2 )
# False
print ( not 1000 999 )
# True
print ( not ( 121 121 and 10 == 2 ))
# True
Округление чисел в python
Всё дело в округлении! В python есть несколько замечательных функций, которые округляют число до указанного знака. Одной из таких функций является round :
pi = 3.14159265358979323846264338327
print (round(pi, 1 ))
# 3.1
print (round(pi, 2 ))
# 3.14
print (round(pi, 3 ))
# 3.12
print (round(pi, 4 ))
# 3.1416
print (round(pi, 10 ))
# 3.1415926536
print (round(pi, 15 ))
# 3.141592653589793
Рассмотрим любопытный пример:
print (round( 2.5 ))
# 2
print (round( 3.5 ))
# 4
print (round( 10.51213 ))
# 11
print (round( 23.5 ))
# 24
print (round( 22.5 ))
# 22
Модуль math
Модуль math представляет собой набор математических формул. Рассмотрим несколько примеров:
print ( dir (math))
[‘__doc__’, ‘__loader__’, ‘__name__’, ‘__package__’, ‘__spec__’, ‘acos’,
‘acosh’, ‘asin’, ‘asinh’, ‘atan’, ‘atan2’, ‘atanh’, ‘ceil’, ‘copysign’,
‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘erf’, ‘erfc’, ‘exp’, ‘expm1’, ‘fabs’,
‘factorial’, ‘floor’, ‘fmod’, ‘frexp’, ‘fsum’, ‘gamma’, ‘gcd’, ‘hypot’,
‘inf’, ‘isclose’, ‘isfinite’, ‘isinf’, ‘isnan’, ‘ldexp’, ‘lgamma’, ‘log’,
‘log10’, ‘log1p’, ‘log2’, ‘modf’, ‘nan’, ‘pi’, ‘pow’, ‘radians’, ‘remainder’,
‘sin’, ‘sinh’, ‘sqrt’, ‘tan’, ‘tanh’, ‘tau’, ‘trunc’]
import math
# Синус 3.14 радиан
print (math. sin ( 3.14 ))
# 0.0015926529164868282
# Косинус 1.1 радиан
print (math. cos ( 1.1 ))
# 0.4535961214255773
# Возведение экспоненты в 3 степень
print (math. exp ( 3 ))
# 20.085536923187668
# Натуральный логарифм 61
print (math. log ( 61 ))
# 4.110873864173311
# Факториал четырех
print (math. factorial ( 4 ))
# 24
# Извлечение квадратного корня
print (math. sqrt ( 9 ))
# 3.0
# Перевод радиан в градусы
print (math. degrees ( 1.572 ))
# 90.06896539456541
И это далеко не всё! Остальные функции я предлагаю вам протестировать самостоятельно : )
Что меняет порядок вычислений в python
Вычисления в python
Хорошего дня! Сегодня мы научимся умножать, делить, вычитать. В каком смысле ты это уже умеешь?! А ты в этом уверен? В любом случае, повторение — это мать учения, так что устраивайся по-удобнее, мы начинаем.
Арифметические операции в python
Вы считаете, что арифметические операции — это просто? Пересчитайте. На самом деле, всё не так страшно, но расслабляться не стоит.
Начнём со всем знакомой четверки:
print ( 10 + 10 )
# 10
print ( 10 — 5 )
# 5
print ( 11 * 7 )
# 77
print ( 10 / 2 )
# 5.0
print ( 10 / 2 )
# 5.0
print ( 100 / 3 )
# 33.333333333333336
print ( 21 / 4 )
# 5.25
print ( 23 / 7 )
# 3.2857142857142856
А как обстоит дело с дробями? Точно также:
0.75 = 0.5 + 0.25 = 1/2 + 1/4 = 0.11
Возникает вопрос, как перевести в двоичную систему такие дроби: 1/3
Это может продолжаться бесконечно долго. Поэтому python прерывает выполнение таких вычислений и часто выдает такие приколы:
print ( 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 )
# 0.7999999999999999
print ( 0.1 + 0.2 )
# 0.30000000000000004
print ( 7 / 3 )
# 2.3333333333333335
Еще немного математики. Математика в каждый дом!
# Возведение в степень
print ( 10 * * 2 )
# 100
print ( 2 * * 4 )
# 16
print ( 3 * * 0.5 )
# 1.7320508075688772
print ( 3 * * — 2 )
# 0.1111111111111111
# Остаток от деления
print ( 11 % 4 )
# 3
print ( 101 % 7 )
# 3
print ( 34 % 5 )
# 4
# Деление нацело
print ( 20 // 4 )
# 5
print ( 129 // 11 )
# 11
print ( 100 // 61 )
# 1
Операции сравнения в python
# Операция равенства: True, если X равен Y
print ( 10 == 10 )
# True
print ( 666 == 661 )
# False
# Операция больше: True, если X больше Y
print ( 120 > 2 )
# True
print ( 1000 > 1999 )
# False
# Операция меньше: True, если X меньше Y
print ( 121 120 )
# False
print ( 0 1 )
# True
# Операция меньше или равно: True, если X меньше или равен Y
print ( 6 6 )
# True
print ( 5 2 )
# False
# Операция больше или равно: True, если X больше или равен Y
print ( 1000 >= 10000 )
# False
print ( 9999 >= 9999 )
# False
Логические операции в python
# Оператор «and» или конъюнкция.
# True, если и выражение X, и выражение Y равны True
print ( 10 == 10 and 10 > 2 )
# True
print ( 666 == 661 and 9 > 0 )
# False
# Оператор «or» или дизъюнкция.
# True, если или выражение X, или выражение Y равны True
print ( 666 == 661 or 9 > 0 )
# True
print ( 666 == 661 or 9 0 )
# False
# Оператор «not» или инверсия меняет значение на противоположное.
# True, если выражение X равно False
print ( not 120 > 2 )
# False
print ( not 1000 999 )
# True
print ( not ( 121 121 and 10 == 2 ))
# True
Округление чисел в python
Всё дело в округлении! В python есть несколько замечательных функций, которые округляют число до указанного знака. Одной из таких функций является round :
pi = 3.14159265358979323846264338327
print (round(pi, 1 ))
# 3.1
print (round(pi, 2 ))
# 3.14
print (round(pi, 3 ))
# 3.12
print (round(pi, 4 ))
# 3.1416
print (round(pi, 10 ))
# 3.1415926536
print (round(pi, 15 ))
# 3.141592653589793
Рассмотрим любопытный пример:
print (round( 2.5 ))
# 2
print (round( 3.5 ))
# 4
print (round( 10.51213 ))
# 11
print (round( 23.5 ))
# 24
print (round( 22.5 ))
# 22
Модуль math
Модуль math представляет собой набор математических формул. Рассмотрим несколько примеров:
print ( dir (math))
[‘__doc__’, ‘__loader__’, ‘__name__’, ‘__package__’, ‘__spec__’, ‘acos’,
‘acosh’, ‘asin’, ‘asinh’, ‘atan’, ‘atan2’, ‘atanh’, ‘ceil’, ‘copysign’,
‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘erf’, ‘erfc’, ‘exp’, ‘expm1’, ‘fabs’,
‘factorial’, ‘floor’, ‘fmod’, ‘frexp’, ‘fsum’, ‘gamma’, ‘gcd’, ‘hypot’,
‘inf’, ‘isclose’, ‘isfinite’, ‘isinf’, ‘isnan’, ‘ldexp’, ‘lgamma’, ‘log’,
‘log10’, ‘log1p’, ‘log2’, ‘modf’, ‘nan’, ‘pi’, ‘pow’, ‘radians’, ‘remainder’,
‘sin’, ‘sinh’, ‘sqrt’, ‘tan’, ‘tanh’, ‘tau’, ‘trunc’]
import math
# Синус 3.14 радиан
print (math. sin ( 3.14 ))
# 0.0015926529164868282
# Косинус 1.1 радиан
print (math. cos ( 1.1 ))
# 0.4535961214255773
# Возведение экспоненты в 3 степень
print (math. exp ( 3 ))
# 20.085536923187668
# Натуральный логарифм 61
print (math. log ( 61 ))
# 4.110873864173311
# Факториал четырех
print (math. factorial ( 4 ))
# 24
# Извлечение квадратного корня
print (math. sqrt ( 9 ))
# 3.0
# Перевод радиан в градусы
print (math. degrees ( 1.572 ))
# 90.06896539456541
И это далеко не всё! Остальные функции я предлагаю вам протестировать самостоятельно : )
Математические вычисления в Python 3
Программирование невозможно представить без работы с числами. Размеры экрана, выбор цвета путем присвоения числовых кодов, географическое расположение, деньги и очки, продолжительность видео – для всего этого используются числа.
Потому умение выполнять математические операции очень важно для программирования. Конечно, чем выше у вас навык математических вычислений, тем лучше для вас; однако совсем не обязательно уметь выполнять сложнейшие вычисления, чтобы быть хорошим программистом. Если у вас нет опыта работы в области математики, старайтесь представлять математику как инструмент или как способ улучшить ваше логическое мышление.
Данное руководство научит вас работать с двумя наиболее распространёнными числовыми типами данных Python:
Операторы Python
Оператор – это символ или функция, которая выполняет то или иное действие над данными. К примеру, символ + – это оператор сложения.
В Python присутствуют как общие, так и специальные математические операторы.
Ниже приведена таблица наиболее распространённых математических операторов Python.
| Операция | Результат |
| x + y | Сложение (сумма x и y) |
| x – y | Вычитание (разница между x и y) |
| -x | Смена знака x |
| +x | Тождественность x |
| x * y | Умножение x на y |
| x / y | Деление x на y |
| x // y | Получение целой части от деления x на y |
| x % y | Остаток от деления x / y |
| x ** y | Возведение в степень |
Также руководство охватывает использование операторов присваивания.
Сложение и вычитание
Операции сложения и вычитания в Python выполняются точно так же, как и в обычной математике. Вы даже можете использовать Python вместо калькулятора.
Также вы можете объявить переменные и указать их в функции print:
a = 88
b = 103
print(a + b)
191
Целые числа бывают положительными и отрицательными. Попробуйте сложить следующие числа:
Числа с плавающей точкой складываются аналогичным образом:
e = 5.5
f = 2.5
print(e + f)
8.0
В результате сложения чисел с плавающей точкой также получается число с плавающей точкой, потому Python выводит 8.0, а не 8.
Синтаксис вычитания отличается от сложения только оператором. Попробуйте отнять 32 из 75.67:
g = 75.67
h = 32
print(g — h)
43.67
Примечание: Если в операции присутствует хотя бы одно число с плавающей точкой, в результате Python также выведет число с плавающей точкой.
Унарные арифметические операции
Унарное математическое выражение состоит только из одного компонента или элемента. В Python плюс и минус вместе со значением могут быть использованы в качестве одного элемента, это позволяет показать тождественность значения (+) или изменить его знак (-).
Тождественность используется нечасто. Плюс можно использовать с положительными числами:
Если вы используете плюс с отрицательным числом, он также вернёт тождественное (в этом случае – отрицательное) число.
Минус позволяет изменить знак. Если вы добавите минус к положительному значению, в результате будет отображено отрицательное значение:
Если добавить минус к отрицательному значению, в результате получится положительное число:
Умножение и деление
Операции умножения и деления, как сложение и вычитание, выполняются в Python так же, как в обычной математике. Для умножения Python использует *, для деления – /.
k = 100.1
l = 10.1
print(k * l)
1011.0099999999999
При делении в Python 3 частное всегда возвращается в виде числа с плавающей точкой, даже если вы делите целые числа:
m = 80
n = 5
print(m / n)
16.0
Это одно из главных различий между Python 2 и Python 3. Python 3 возвращает дробный результат, потому при делении 11 на 2 вы получите 5.5. В Python 2 деление привязано к типам данных, потому при делении целого числа невозможно получить число с плавающей точкой; поэтому при делении 11 на 2 Python 2 возвращает 5.
Читайте также: Python 2 vs Python 3
Когда числа по обе стороны символа деления являются целыми, выполняется деление floor, то есть, для фактора х Python 2 возвращает наибольшее целое число меньше или равное х. К примеру, при делении 5 / 2 таким числом будет 2.
Чтобы выполнить деление floor и получить только целую часть числа, Python 3 использует оператор //. К примеру, разделив 100//40, вы получите 2.
Деление по модулю
Оператор % – это модуль, который возвращает остаток от деления. К примеру, это позволяет найти числа, кратные одному и тому же числу.
o = 85
p = 15
print(o % p)
10
При делении 85 на 15 получается 5 и 10 в остатке.
Попробуйте разделить числа с плавающей точкой:
q = 36.0
r = 6.0
print(o % p)
0.0
Число 36.0 делится на 6.0 без остатка, потому в результате получился 0.0.
Возведение в степень
Оператор ** в Python возводит число в степень. Например, выражение 5 ** 3 значит, что 5 нужно возвести в третью степень. В математике это выглядит так: 5³. В Python можно получить тот же результат (125), умножив 5*5*5.
s = 52.25
t = 7
print(s ** t)
1063173305051.292
Приоритет операций
Как и в математике, в Python нужно помнить о том, что операции выполняются в порядке их приоритета, а не по порядку справа налево.
Сначала выполняется умножение (10*5=50), а затем сложение (10+50). Потому результат будет такой:
Чтобы сначала выполнить операцию сложения, а затем умножить полученный результат на 5, нужно взять сложение в скобки:
u = (10 + 10) * 5
print(u)
100
Математические операции имеют такой приоритет:
Операторы присваивания
Наиболее распространённым оператором присваивания является знак равенства (=). Он присваивает переменной слева значение справа. К примеру, в выражении v = 23 переменной v было присвоено значение 23.
В программировании часто используются составные операторы присваивания, которые выполняют операцию со значением переменной, а затем присваивают этой переменной полученное новое значение. Составные операторы объединяют арифметический оператор с оператором =. Например:
Составной оператор += выполнил сложение, а затем присвоил переменной w, значение, полученное в результате сложения.
Составные операторы часто используются в циклах.
for x in range (0, 7):
x *= 2
print(x)
0
2
4
6
8
10
12
Это позволяет автоматизировать процесс умножения чисел в заданном диапазоне.
В Python есть составные операторы присваивания для каждой математической операции:
Операторы присваивания позволяют постепенно увеличить или уменьшить значение, а также автоматизировать некоторые вычисления.
Какой порядок вычисления в Python?
Пишут, что порядок вычислений в Python такой:
1. Выражение в скобках;
2. Экспоненты;
3. Умножение;
4. Деление;
5. Сложение;
6. Вычитание.
Т.е. сначала идет сложение, а потом вычитание. Значит, ответом на выражение в начале текста должность быть «-1».
Однако, Python выдает «5».
Как так? О.о
Python просто вычисляет по порядку слева направо?
