Рсу что это такое
Распределённая система управления
Распределённая система управления (англ. Distributed Control System, DCS ) — система управления технологическим процессом, отличающаяся построением распределённой системы ввода-вывода и децентрализацией обработки данных.
РСУ применяются для управления непрерывными и гибридными технологическими процессами (хотя сфера применения РСУ только этим не ограничена). К непрерывным процессам можно отнести те, которые должны проходить днями и ночами, месяцами и даже годами, при этом остановка процесса, даже на кратковременный период, может привести к порче изготавливаемой продукции, поломке технологического оборудования и даже несчастным случаям. Классическим примером непрерывного процесса является изготовление стекла в стекловаренной печи.
Сферы применения РСУ многочисленны:
Требования к современной РСУ:
История
Первые DCS были представлены на рынок в 1975 году компаниями Honeywell (система TDC 2000) и Yokogawa (система CENTUM). Американский производитель Bristol Babcock в том же году представил свои универсальные контроллеры UCS 3000. Иногда к DCS относят систему Contronic 3 фирмы Schoppe & Faeser.
В 1979 году компания Fisher & Porter представила свою систему DCI-4000, а Invensys систему SPECTRUM.
В 1980 году компания Bailey представила систему NETWORK 90, а компания Alfa Laval систему SattLine.
Современный рынок
Основными современными системами DCS сегодня являются:
В сумме указанные производители занимают более половины мирового рынка DCS-систем. Прочие более-менее заметные производители это Metso, Yamatake, Toshiba, Hitachi, Fuji.
См. также
Полезное
Смотреть что такое «Распределённая система управления» в других словарях:
распределённая система управления — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN distributed control systemDCS … Справочник технического переводчика
распределённая система управления и информации — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN distributed control and information systemDOS … Справочник технического переводчика
Распределённая система — система, для которой отношения местоположений элементов (или групп элементов) играют существенную роль с точки зрения функционирования системы, а, следовательно, и с точки зрения анализа и синтеза системы. Компьютерные системы Распределенная… … Википедия
распределённая система компьютерного управления — paskirstytoji kompiuterinio valdymo sistema statusas T sritis automatika atitikmenys: angl. DCCS; distributed computer control system vok. verteilte Prozeßrechnersystem, n rus. распределённая система компьютерного управления, f pranc. système de… … Automatikos terminų žodynas
Система управления — Структура управления систематизированный (строго определенный) набор средств сбора сведений о подконтрольном объекте и средств воздействия на его поведение с целью достижения определённых целей. Объектом системы управления могут быть как… … Википедия
Система управления версиями — (от англ. Version Control System, VCS или Revision Control System) программное обеспечение для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при … Википедия
Распределённая ФС — Это список файловых систем и сетевых протоколов, эмулирующих работу файловой системы, с небольшим описанием. Чтобы узнать более, вы можете пройти по соответствующей ссылке. Некоторые старые системы поддерживали только одну файловую систему,… … Википедия
Распределённая файловая система — Это список файловых систем и сетевых протоколов, эмулирующих работу файловой системы, с небольшим описанием. Чтобы узнать более, вы можете пройти по соответствующей ссылке. Некоторые старые системы поддерживали только одну файловую систему,… … Википедия
Распределённая файловая система (Microsoft) — Distributed File System (DFS) компонент Microsoft Windows, использующийся для упрощения доступа и управления файлами, физически распределёнными по сети. При её использовании файлы, распределённые по серверам, представляются находящимися в… … Википедия
Распределённая энергетика — Ветрогенератор, вырабатывающий энергию для подачи в распределенную сеть, Испания Распределённое производство энергии (англ. Distributed power generation) концепция строительства источников энергии и распределительных с … Википедия
Распределенные системы управления (РСУ)
Введение
Стремительное развитие микропроцессорных устройств, нашедших применение в первую очередь в технических системах, изменило содержание принципов управления процессами производства. АСУТП носят характер распределенных территориально и функционально систем управления (РСУ). В качестве узловых станций в них используются промышленные ПЭВМ, программируемые контроллеры, операторские терминалы. Датчики и исполнительные устройства все чаще являются интеллектуальными, то есть осуществляют обработку и преобразование информации в цифровой сигнал в месте их установки.
Распределенные системы управления (РСУ)
Информация в РСУ, как правило, передается по цифровым сетям.
РСУ – система, состоящая из множества устройств, разнесенных в пространстве, каждое из которых не зависит от остальных, но взаимодействует с ними для выполнения общей задачи.
РСУ имеет ряд преимуществ перед сосредоточенной: больше быстродействие благодаря распределению задач между параллельно работающими устройствами, повышенную надежность, улучшенную помехоустойчивость благодаря уменьшению длины линий передачи аналоговых сигналов, меньший объем кабельной продукции.
Анализ сложных РСУ позволяет выделить в них несколько уровней иерархии (рис. ). Нижний (полевой) уровень включает датчики и исполнительные устройства, как правило, имеющие цифровой интерфейс, позволяющий передавать информацию по цифровым сетям нижнего уровня (AS – интерфейс, HART – протокол и др.). Второй (контроллерный) уровень состоит из программируемых логических контроллеров с модулями ввода-вывода, которые обмениваются информацией по промышленной сети (Fieldbus). На этом уровне могут использоваться ПЭВМ. Оператор процесса наблюдает за его ходом и осуществляет управление с помощью мнемосхемы на мониторе ПЭВМ (на базе SCADA-системы).
Программно–технический комплекс – основа построения РСУ
Развитие современных МП-средств автоматизации и передачи данных дает возможность подходить к построению РСУ комплексно, то есть во многих случаях создавать системы на базе современных схемотехнических решений, технологий системного программирования и дружественных интерфейсов, как для эксплуатационного персонала, так и для участников разработки и проектирования АСУТП.
Таким требованиям отвечают программно-технические комплексы (ПТК), создаваемые рядом фирм (см. главу ).
В состав ПТК входит:
1.Семейство современных микропроцессорных контроллеров (ПЛК) различной информационной мощности – от малоканальных регуляторов до ПЛК, обрабатывающих более 1000 входных и выходных сигналов.
2.Персональные компьютеры, используемые как для создания интерфейса «человек-система» для управляющего персонала, так и для обеспечения информационных задач системы.
3.Цифровые сети передачи данных на всех уровнях РСУ, включая сетевое оборудование.
4.Системное программное обеспечение, в том числе операционные системы компьютеров, программное обеспечение ПЛК.
Структура распределенной системы управления
Современное промышленное предприятие невозможно представить без систем автоматизации. Совершенствование этих систем ведет к улучшению качества продукции, уменьшению энергопотребления, минимизации материальных затрат, повышению уровня безопасности и сокращению загрязнения окружающей среды.
В настоящее время широко используется такое понятие как «автоматизированная система управления» (АСУ), работа которой предполагает участие человека. Его роль заключается, прежде всего, в наблюдении за ходом технологического процесса или, более широко — производственного процесса на предприятии. При необходимости человек принимает решения по изменению задач управления, реализация этих решений может быть выполнена как человеком, так и управляющей системой. Отметим, что участие человека в управлении возможно как непосредственно на отдельном участке технологического процесса, так и при организации управления в целом цехом или предприятием.
С увеличением территории, на которой расположен управляемый объект (а, следовательно, и АСУ), с ростом числа датчиков получения информации об объекте и усложнением алгоритмов управления становится более эффективным применение распределенных систем.
Современные системы управления построены на представлении информации о процессе, передаче и обработке этой информации в цифровом виде. Таким образом, основными элементами АСУ являются:
· компьютеры, на базе которых организованы автоматизированные рабочие места персонала; программируемые логические контроллеры (ПЛК), осуществляющие процесс управления.
АРМ руководителей предприятия.
На рис. 1 представлена структура многоуровневой распределенной системы управления. Она является иерархической, то есть нижние уровни подчиняются вышестоящим. Она является распределенной, так как состоит из многих компьютеров и ПЛК, между которыми распределены функции сбора, обработки данных и управления.
Автоматические регуляторы
Автоматический регулятор на входе имеет информацию о текущем и заданном значениях регулируемой величины. Он выполняет следующие функции: вычисление отклонения, т.е. разности между текущим и заданным значениями регулируемой величины; вычисление в зависимости от отклонения управляющего воздействия в соответствии с законом регулирования.
Автоматические регуляторы классифицируются в зависимости от регулируемого параметра, используемой энергии, характера изменения регулирующего воздействия.
Современные регуляторы, как правило, являются универсальными. На их входы подается информация о любой измеряемой величине, преобразованной в унифицированный сигнал. Таким образом, выходной сигнал регулятора не зависит от того, какова регулируемая величина-температура, давление и т.д., однако в некоторых случаях выпускаются промышленные регуляторы для конкретной технологической величины, например, температуры.
В зависимости от источника используемой энергии автоматические регуляторы подразделяются на регуляторы прямого и непрямого действия.
В регуляторах прямого действия одновременно с изменением регулируемой величины от объекта отбирается часть энергии, которая используется для работы регулятора и воздействия на его исполнительный механизм и регулирующий орган объекта. Таким образом, к регулятору энергия извне не подводится.
К регуляторам непрямого действия извне подводится энергия для работы самого регулятора и воздействия на исполнительный механизм.
По характеру изменения регулирующего воздействия автоматические регуляторы подразделяются на линейные и нелинейные.
В общем случае автоматическое поддержание заданного значения (уставки) регулируемой величины происходит в соответствии со схемой показанной на рис.
Рис Схема замкнутой системы регулирования.
В настоящее время подавляющее большинство автоматических регуляторов является цифровыми. Выходной сигнал в них рассчитывается по формуле:
Выходные устройства ПИД регулятора могут быть:
· ключевого типа (см. описание работы двухпозиционного регулятора);
Y- выходной сигнал регулятора;
Рис Перемещение по (в) регулятором с импульсным выходом совместно с исполнительным механизмом постоянной скорости при различных движений импульса (а, б)
Регулирующий клапан имеет электропривод (электродвигатель ИМа) и две пары контактов для управления направлением его вращения.
Рис Регулятор с выключенными реле (а) и графики регулируемой величины с состояние реле (б).
Как видно из рис., при одном периоде Tсл длительность импульса определяется значением выходного сигнала Y. Эти импульсы D передаются на исполнительное устройство регулятора. Такое преобразование выходного сигнала для управления называется, широко-импульсной модуляцией (ШИМ). Выходное устройство ключевого типа включает исполнительный механизм постоянной скорости (ИМПС) на время D, с.
Результирующее перемещение регулирующего органа объекта с помощью ИМПС показано на рис.
Введение
Стремительное развитие микропроцессорных устройств, нашедших применение в первую очередь в технических системах, изменило содержание принципов управления процессами производства. АСУТП носят характер распределенных территориально и функционально систем управления (РСУ). В качестве узловых станций в них используются промышленные ПЭВМ, программируемые контроллеры, операторские терминалы. Датчики и исполнительные устройства все чаще являются интеллектуальными, то есть осуществляют обработку и преобразование информации в цифровой сигнал в месте их установки.
Распределенные системы управления (РСУ)
Информация в РСУ, как правило, передается по цифровым сетям.
РСУ – система, состоящая из множества устройств, разнесенных в пространстве, каждое из которых не зависит от остальных, но взаимодействует с ними для выполнения общей задачи.
РСУ имеет ряд преимуществ перед сосредоточенной: больше быстродействие благодаря распределению задач между параллельно работающими устройствами, повышенную надежность, улучшенную помехоустойчивость благодаря уменьшению длины линий передачи аналоговых сигналов, меньший объем кабельной продукции.
Анализ сложных РСУ позволяет выделить в них несколько уровней иерархии (рис. ). Нижний (полевой) уровень включает датчики и исполнительные устройства, как правило, имеющие цифровой интерфейс, позволяющий передавать информацию по цифровым сетям нижнего уровня (AS – интерфейс, HART – протокол и др.). Второй (контроллерный) уровень состоит из программируемых логических контроллеров с модулями ввода-вывода, которые обмениваются информацией по промышленной сети (Fieldbus). На этом уровне могут использоваться ПЭВМ. Оператор процесса наблюдает за его ходом и осуществляет управление с помощью мнемосхемы на мониторе ПЭВМ (на базе SCADA-системы).
Что такое РСУ (Расчетные Сочетания Усилий)?
Инженеры-расчетчики, которые только начинают свою профессиональную деятельность, в ходе расчетов объектов неизбежно столкнутся с вопросом: что такое РСУ? В этой статье описано что это и зачем нужно.
Основные положения
РСУ (Расчетные Сочетания Усилий) требуется выполнять для определения тех самых сочетаний отдельно заданных нагружений, которые могут быть решающими и наиболее опасными. На основании таких комбинаций вычисляются внутренние силовые факторы для каждого рассчитываемого стержня или узла, по которому и будет назначена и проверена жесткость.
Механизмом работы определения РСУ является принцип суперпозиции, согласно которому программа SCAD автоматически осуществляет выборку невыгодных сочетаний усилий. Они создают в элементах расчетной схемы максимально упругие напряжения в характерных точках или площадках заранее назначенных конечных элементов.
Согласно СП 20.13330.2016 «Нагрузки и воздействия» п.5, выделяют несколько типов нагрузок, которые отличаются друг от друга, среди прочих, и продолжительностью воздействия на конструкцию, а именно:
Ради практического упрощения работы с типами нагрузок в рамках среды SCAD, реализованые дополнительные типы, в том числе крановые, неактивные (например, к ней относится статическая составляющая ветрового воздействия, так как является она частью динамического загружения ветра), специальные.
Стоит помнить, что такое РСУ определяется для каждого элемента расчетной схемы в отдельности, в частности даже для каждого сечения. При этом, найденный набор комбинаций может не совпадать для различных элементов. Таким образом, для системы в целом получаются сочетания нагружений, которые физически не действуют одновременно, поэтому нельзя построить, например, эпюру или изополя РСУ. Но, тем не менее, инструменты, которые реализованы в SCAD, позволяют построить огибающую моментов или нормальных сил, то есть какого-либо одного силового фактора.
Логические связи между загружениями
Одним из самых главных элементов исходных данных для расчетных сочетаний является назначение логических связей между загружениями. В рамках расчетных программ можно выделить несколько типов логических взаимодействий:
Помимо вышеуказанных связей, предусмотрена так же знакопеременность заданных загружений. Таковыми являются практически все динамические нагрузки, в частности сейсмика и пульсация ветра.
Особые загружения, например сейсмика, согласно СП 14.13330.2018 п. 5.1, не должны действовать вместе с ветровыми нагрузками, то есть являются взаимоисключающими. Это можно пометить вручную в таблице РСУ или доверить программе, которая автоматически исключит их из совместного действия. По такому же принципу автоматическому исключения в SCAD реализовано одновременное воздействие статической и динамической ветровой нагрузки.
Коэффициенты РСУ
• столбец (1) — первое основное сочетание: для всех видов загружений, кроме особых, К=1 (для особых К=0).
• столбец (2) — второе основное сочетание: для постоянных К2= 1; длительно действующих К2=0,95; кратковременных, крановых и тормозных К2=0,9 особых К2=0.
• столбец (3) — особое сочетание: для постоянных К3=0,9; длительно действующих К3=0,8; кратковременных К3=0,5; крановых и тормозных К3=0; сейсмических К3=l; прочих динамических К3=0.
Выводы
Поняв, что такое РСУ, инженер-расчетчик может осуществлять подбор профилей или арматуры. Таким образом, правильно задав в расчетной схеме все загружения, действующие на проектируемый объект, определив их тип логические взаимосвязи, можно осуществить подбор каждого сечения элементов с проверкой на прочность.
Рсу что это такое
РСУ и ПАЗ
Автоматизированная система управления технологическим процессом (АСУ ТП) — комплекс программных и технических средств, предназначенный для автоматизации управления технологическим оборудованием на предприятиях. Под АСУ ТП обычно понимается комплексное решение, обеспечивающее автоматизацию основных технологических операций на производстве в целом или каком-то его участке, выпускающем относительно завершенный продукт.
РСУ, как правило, применяются для управления непрерывными технологическими процессами (хотя, строго говоря, сфера применения РСУ только этим не ограничена). К непрерывным процессам можно отнести те, которые должны проходить днями и ночами, месяцами и даже годами, при этом останов процесса, даже кратковременный, недопустим. То есть, под непрерывными процессами подразумеваются те, останов которых может привести к порче изготавливаемой продукции, поломке технологического оборудования и даже несчастным случаям, а также те, возобновление которых после останова связано с большими издержками.
Из вышесказанного вытекает главное требование к РСУ – отказоустойчивость. Для РСУ отказ, а соответственно и останов технологического процесса, недопустим. Высокая отказоустойчивость достигается путем резервирования (как правило, дублирования) аппаратных и программных компонентов системы, использования компонентов повышенной надежности, внедрения развитых средств диагностики, а также за счет технического обслуживания и непрерывного контроля со стороны человека.
Сферы применения РСУ бесчисленны:
Первые РСУ были представлены на рынок в 1975 компаниями Honeywell (система TDC 2000) и Yokogawa (система CENTUM).
Основными современными системами DCS сегодня являются:
В сумме указанные производители занимают более половины мирового рынка РСУ.
Современные АСУ ТП
Прочитав интересную статью, мне захотелось поделиться своими знаниями и соображениями по поводу современных АСУ ТП. Описанное ниже относиться в большей степени к продукции таких фирм как Yokogawa, Siemens и Honeywell. Сразу хочу сказать, что у каждой из систем есть свои особенности, преимущества и недостатки, так что я описываю лишь общие характеристики современных АСУ ТП.
Современные автоматизированные системы управления технологическими процессами (АСУ ТП), применяемые на опасных производствах и предприятиях (химическая, нефтехимическая промышленности, ГЭС, ТЭС, АЭС и т.д.), как правило, состоят из распределенной системы управления (РСУ) и системы противоаварийной автоматической защиты (ПАЗ).
Основная задача ПАЗ — перевод производства в безопасное состояние, при возникновении каких-либо проблем в работе РСУ (выход технологических процессов за установленные границы, отказ оборудования, нештатные ситуации). Как правило, система ПАЗ получает данные от дублированных датчиков (одной из самых надежных схем считается «2оо3», когда срабатывание любых 2 из 3 датчиков, установленных на одной контрольной точке, считается необходимым условием для срабатывания защитной блокировки) и управляет резервированным оборудованием. У системы ПАЗ нет станций оператора, есть только инженерная станция, с помощью которой выполняется конфигурирование ПЛК системы ПАЗ. Со станций оператора РСУ можно видеть как работает система ПАЗ, но нельзя ей управлять. Конечное оборудование не зависит от оборудования РСУ, к примеру, если на трубопроводе заклинил клапан РСУ, то отработает отсекатель системы ПАЗ.
Особенности АСУ ТП
Выводы
Таким образом, заражение станции оператора вирусом маловероятно, но даже если это произошло, то никакой явной угрозы безопасности это не представляет. Конечно, бывают случаи, когда операторы, обходят запреты и ухитряются установить на свои станции игры и выйти в интернет, но это быстро пресекается лишением премий и другими административными методами. Если же предположить, что существует специализированный вирус, который знает особенности функционирования систем, и сможет гипотетически управлять технологическим процессом, вызывая тем самым негативные последствия, то в любом случае, при возникновении аварийной ситуации отработает система ПАЗ (которая не управляется со станций операторов) и переведет производство в безопасное состояние. Да, это будут миллионные убытки предприятию (останов производства), но в любом случае не техногенная катастрофа. Если говорить о вероятности заражения вирусом инженерной станции ПАЗ, то это, во-первых, должен быть супер интеллектуальный вирус, который сам перепрограммирует ПЛК, причем именно так, чтобы тот отказал в необходимый момент, во-вторых, инженеры ПАЗ, должны быть совершенно безголовые и рыть яму сами себе. Конечно, это не все факторы, которые делают заражением станции инженера ПАЗ маловероятным событием, могу привести еще несколько: постоянные сверки версии программ загруженных в ПЛК, постоянный контроль помещения с инженерными станциями, ну и конечно же, пароль, установленный на сам проект системы ПАЗ.
В итоге хочется сказать, что безопасности современных АСУ ТП, конечно, угрожают вирусы и прочие высокотехнологичные проблемы, такие как уход станций оператора в банальный BSOD, но они не так критичны как многие хотят это представить. Надо помнить, что за безопасностью следят системы ПАЗ, к конфигурированию которых подходят со всей осторожностью и ответственностью. Человеческий фактор всегда имеет место, но системы ПАЗ для того и создаются, чтобы свести негативное влияние данного фактора к минимуму.
С удовольствием отвечу на вопросы, если они возникнут.
UPD. Возможный сценарий атаки на SCADA систему аргументировано описал makran, которому, кстати, спасибо за инвайт.







