Робототехника в школе что это
Кружки робототехники: что на них изучается, как проходит обучение и сколько стоит?
В кружке робототехники ребенок изучает различные дисциплины, используя игровой метод и коллективный вид деятельности. Основы электротехники, программирования, математики, инженерии, механики выходят за пределы школьного учебника, но становятся близкими и понятными, входя в жизнь и сознание ребенка на занятиях робототехникой. Наука, прямо в соответствии с требованиями новых ФГОС, приобретает тесную и отчетливую для ребенка связь с реальной жизнью.
Многие дети, начиная с конструирования роботов, настолько увлекаются этим, что связывают свою дальнейшую жизнь с техническим творчеством и программированием, поступают на соответствующие специальности в вузы и получают профессию.
Как строится обучение?
Занятия строятся от простого к сложному, причем, на самих занятиях не просто занимаются конструированием и собиранием роботов из деталек, а выполняют проекты: знакомятся с теоретическими вопросами, ставят поисковые задачи, учатся работать в команде, обсуждать и отстаивать свою точку зрения. Робот помогает пройти этот путь легко и с удовольствием: материал не выдается в сухом и дозированном виде, а познается детьми в игре, в творчестве и поиске решения задачи.
Правда, насколько эффективны занятия в кружке, зависит от преподавателя и его методического обеспечения. Робототехника настолько популярна, что существуют специальные методики, в которых продумано построено От и До.
На первых занятиях ребята пытаются разобраться в том, как устроен реальный мир и по каким физическим законам существует все, что нас окружает. Одновременно обучающиеся знакомятся с конструктором, из которого они и будут создавать своего первого робота.
Что получает ребенок от обучения
Материальным результатом обучения в кружке робототехники для детей становится созданный ребенком самостоятельно робот (обычно он подлежит демонтажу, поскольку конструктор является собственностью кружка; можно купить такой же для себя; цены — от 10 тыс. руб.). Ну, а нематериальный результат — это знания, умения и интерес ребенка к науке и техническому творчеству.
Позднее дети начинают знакомиться с основами программирования.
Возраст детей
В кружках робототехники могут обучаться дети примерно от 5 лет и до 15-17. Разумеется, программы у них разные.
Если говорить о платформе робототехники LEGO, то младшие (дошкольники и учащиеся начальной школы) фактически играют с простейшим конструктором для конструирования роботов LEGO WeDo, познавая окружающий мир, учась взаимодействовать друг с другом. Детали робота довольно легко соединяются и похожи на детали традиционного конструктора LEGO, который есть у многих дошкольников. Программа для движения робота, которую создают обучающиеся, тоже несложная и пишется из готовых «блоков» под руководством преподавателя. Но робот у них получается самый настоящий.
Ребята постарше пользуются конструктором LEGO Mindstorms; он более сложный, с другим принципом крепления. Этот конструктор позволяет создать более сложную модель, нежели в LEGO WeDo. На занятиях вводятся элементы программирования на языке Scratch, С++, либо визуальном языке программирования.
Робототехникой занимаются и студенты, и взрослые. Но платформы и задачи, которые ставят перед собой взрослые, отличаются от детских занятий.
Что представляет собой конструктор
Конструкторы, с которыми работают дети в кружке робототехники, включают в себя:
Необходим также и компьютер — на нем создается программа, в соответствии с которой робот будет действовать. Также на компьютере детям предоставляется учебный материал по теме занятия. Датчик реагирует на раздражитель, и робот совершает действие, предписанное ему программой, — это суть действий модели, которую к концу обучения должен собрать ребенок.
Конструкторы LEGO удобны тем, что их нетрудно приобрести (хотя они довольно дороги, от 10 до 30 тысяч рублей. Например, в интернет-магазине OZON.ru можно купить конструктор Mindstorms) и они используются в большинстве международных соревнований и конкурсов по робототехнике. В большинстве кружков робототехники для детей пользоваться таким комплектом слушатели могут бесплатно.
Другие платформы
LEGO — не единственная платформа, на которой занимаются робототехникой. Есть и другие «железки»: Fishertechnic, Arduino, Raspberry Pi, Multiplo. Перед тем, как записаться в кружок, уточните, на какой базе там проходит обучение.
Стоимость обучения
Цены на обучение ребят на курсах или в кружке робототехники обычно где-то около 500-1000 рублей за одно занятие, хотя нередко они выше или ниже, это зависит от региона и сложности программы. В отдельных регионах есть возможность посещения кружка бесплатно.
Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.
Понравился материал?
Хотите прочитать позже?
Сохраните на своей стене и
поделитесь с друзьями
Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст
Ошибка в тексте? Мы очень сожалеем,
что допустили ее. Пожалуйста, выделите ее
и нажмите на клавиатуре CTRL + ENTER.
Кстати, такая возможность есть
на всех страницах нашего сайта
Робототехника в школе: что это такое и для чего она нужна
Этой статьей мы открываем спецпроект «РобоШкола: оборудование для изучения робототехники в школе и детском саду». Но чтобы начать говорить о том, какое оборудование существует, как применяется и для чего, давайте разберемся, что такое робототехника, откуда она пришла в образование и, главное, что может дать нашим детям.
Разбираемся с терминами и понятиями
Начиная разговор о робототехнике в школе, неплохо было бы определиться, что мы понимаем под терминами «робот», «робототехника» и «образовательная робототехника». Вполне развернутый и подробный ответ на этот вопрос можно найти в стандартах ГОСТ Р ИСО 8373-2014 «Роботы и робототехнические устройства. Термины и определения» или в соответствующем международном стандарте ISO 8373:2012 «Robots and robotic devices — Vocabulary»:
Робот (robot) — приводной механизм, программируемый по двум и более осям, имеющий некоторую степень автономности, движущийся внутри своей рабочей среды и выполняющий задачи по предназначению».
Робототехника (robotics) — наука и практика разработки, производства и применения роботов.
Образовательная робототехника, в свою очередь, – это междисциплинарная учебная среда, основанная на использовании роботов и электронных компонентов в качестве общей составляющей для улучшения развития навыков и компетенций у детей и подростков. Это, прежде всего – дисциплины, именуемые STEAM (science – наука, technology – технология, engineering – инжиниринг, arts and math – искусство и математика), хотя робототехника может также затрагивать и другие области, такие как лингвистика, география и история.
Всех роботов условно можно разделить на два типа – промышленные и обслуживающие (сервисные) устройства. Те, которые используются в школах и колледжах, в большинстве своем, относятся к обслуживающим, но тут стоит обратить внимание на важный нюанс – целью создания таких роботов является не новый продукт или сервис, а именно образование – то есть передача связанных знаний о мире, технике, социальных взаимодействиях или иных навыков посредством конструирования и программирования робота. То есть робот в образовании – это не цель, а только лишь инструмент.
История образовательной робототехники в России
Как в России, так и за рубежом, появление и развитие образовательной робототехники неразрывно связано со знаменитой датской компанией Lego. Именно она разработала первый массовый роботехнический конструктор Lego Mindstorms в уже далеком 1998 году. В том же году первые наборы этого конструктора появились в нескольких пилотных школах Москвы, а еще через пару лет начались массовые поставки, были разработаны первые учебные методические материалы.
В 2002 году в Москве прошли первые соревнования с робототехническими конструкторами «Международные состязания роботов», в которых участвовали 15 школ Москвы и одна из Санкт-Петербурга.
Начиная с 2005 года, робототехнические конструкторы появляются в классах за пределами двух столиц, осенью 2008 года для популяризации направления запускается программа «Робототехника: инженерно-технические кадры инновационной России». Ее цель – обеспечение равного доступа к новейшим технологиям детей и молодежи, вне зависимости от региона проживания.
В дальнейшем робототехническое образование начинает набирать популярность, уже начиная с 2010-х годов, появляются кружки, сайты, региональные программы развития и поддержки, а также первые отечественные производители. Робототехника попадает во ФГОС и становится обязательным элементом школьного образования:
«Материально-техническое оснащение образовательной деятельности должно обеспечивать возможность: …проектирования и конструирования, в том числе моделей с цифровым управлением и обратной связью, с использованием конструкторов; управления объектами; программирования»
ФГОС ООО (Приказ Минобрнауки РФ от 17 декабря 2010 г. № 1897)
В 2014 г. утверждается «Концепция развития дополнительного образования детей», подготовленная рабочей группой под руководством А. Г. Асмолова. Среди прочего Концепция предусматривала «создание в системе дополнительного образования детей сети ресурсных центров для обеспечения технологической подготовки обучающихся, организации научно-технического, художественного творчества и спорта». Концепция оказала наибольшее влияние на развитие отрасли, поскольку в ней напрямую была указана робототехника.
Важным этапом развития робототехники в образовании, связанным с участием государства, стала программа создания детских технопарков «Кванториум». Она стартовала в рамках Федеральной целевой программы развития образования в 2017 г. С 2019 года робототехника включена в состав оборудования для оснащения различных образовательных организаций и центров дополнительного образования по направлениям Нацпроекта Образование.
Как мы видим, буквально за полтора десятка лет робототехника прочно вошла в школу и продолжает развиваться. Но почему же робототехника так важна для современного образования и зачем она приходит уже даже в детские сады? Давайте разберемся.
Для чего ребенку робототехника?
Для начала необходимо уточнить, что отдельного предмета Робототехника в школьной программе, а тем более в программе детского сада, не существует. Эта тематика затрагивается в основном в рамках дополнительного образования, а также на уроках технологии и информатики. Кроме того, практически в каждом городе России существует множество кружков, секций и центров робототехники, как сетевых, охватывающих практически всю страну, так и местных.
Робототехника так привлекательна для педагогов и тренеров, в первую очередь потому, что позволяет охватить очень большой пласт знаний и компетенций, показать ребенку их взаимосвязь, развить принципиально новые навыки. Среди них и критическое мышление, и творческий подход к решению задач, а также работа в команде, креативность, адаптация, кодирование, различные коммуникативные навыки, а также – ответственность, умение систематизировать собственные действия, развитие пространственного восприятия и отношений между объектами и субъектами. Кроме того, конструируя, собирая, программируя робота, ребенку требуются самые различные знания из математики, информатики, физики, инженерии, а иногда даже химии и биологии.
Создание робота в формате образовательной робототехники должно приводить не просто к появлению движущейся машинки или предмета, выполняющего заданный алгоритм действий, а к реализации проекта с заранее запланированным результатом посредством робота. То есть построить прибор, который будет поливать цветы в теплице в зависимости от влажности почвы, конечно, возможно и это тоже будет результат, но намного более значимым проектом станет конструирование подобной теплицы и оснащение ее необходимыми приборами и датчиками, позволяющими получить лучший урожай.
Для создания подобного оборудования ребенку потребуется не просто расставить датчики и подвести привод, но разобраться с особенностями почвы, требованиями к освещенности для различных растений, вегетативным циклами и множеством других вопросов, напрямую с конструированием робота не связанными.
Именно поэтому робототехника считается важным элементом STEAM-образования – модели обучения, предназначенной для совместного изучения естественных наук, математики и технологий, и в которой практика имеет приоритетное значение над теорией.
Также важно заметить, что робототехника неразрывно связана с программированием, а в жизни программирование может быть слишком сложным и утомительным для ребенка, если изучать его с помощью «традиционного» абстрактного метода. Но в случае робототехники ученик имеет возможность управлять физическим роботом и сразу видит, что идет не так, на практике узнает предел возможностей технологий, понимает, что роботы могут и не могут делать.
Кроме всего вышесказанного, робототехника позволяет развить так называемое вычислительное мышление. Проектируя и создавая роботов, мы учимся абстрагироваться от концепций, разделять большую проблему на мелкие части и предлагать решения, которые могут быть представлены в виде последовательности инструкций и алгоритмов.
Роботы с пеленок
Последнее время робототехника становится все более популярным способом для практического знакомства с информатикой даже самых маленьких детей. Наборы робототехники в этом случае выступают как инструменты, с помощью которых дети могут создавать, строить или программировать, повышая технологическую грамотность. Существуют различные наборы, каждый из которых поддерживает разные виды деятельности и стили обучения, в том числе заранее сконструированные роботизированные системы (например, Bee-Bot) и системы, которые дают детям возможность участвовать в создании робота (например, Lego Education WeDo 2.0).
С помощью игры обучающие роботы помогают детям в раннем возрасте развить одну из основных познавательных компетенций математического мышления: вычислительное мышление. То есть они помогают развивать мыслительный процесс, который мы используем для решения различных проблем, посредством упорядоченной последовательности действий – алгоритма.
Конечно, роботы для малышей — это не те конструкторы, которые они встретят в школе, их не нужно долго и кропотливо собирать, они довольно просты в использовании и обычно умеют делать не так много, например, ходить вперед-назад и поворачиваться (как Bee-Bot). Но этого уже достаточно для того, чтобы дети начали понимать принципы алгоритмики и в будущем смогли легко справляться с более сложными задачами.
Робототехника в современном российском образовании
Сейчас в России нет единой политики и стандартов в отношении робототехники в образовании, что обусловливает заметные различия в характере и масштабах ее развития в регионах. Драйверами развития направления зачастую являются педагоги-энтузиасты, частные компании, иногда этим направлением заинтересовываются чиновники от образования, что дает заметный рост в регионе.
Так в Москве наборами робототехники, которые входили в комплектацию инженерных классов, были оснащены большинство образовательных комплексов за счет бюджетных средств.
А, например, в Свердловской области робототехника развивалась усилиями частных компаний и уже позднее в это направление включился Свердловский институт развития образования и государственные структуры.
Иной сценарий был выбран в Пермском крае. В этом регионе Министерство образования обязало директоров в каждой школе создать зоны робототехники, а позже в подобные проекты также были вовлечены и детские сады.
Конечно, в крупных городах и региональных центрах (прежде всего, в Москве и Санкт-Петербурге) вариантов для занятий робототехникой много, и они разнообразны. Программы предлагают как государственные организации (школы, организации дополнительного образования, вузы), так и большое число частных клубов. Содержание программ, продолжительность и цены могут отличаться существенно. Большую долю рынка занимают крупные сетевые кружки, такие как Лига роботов, РОББО, StartJunior.
Основным барьером для развития робототехники в небольших городах и поселках является банальная нехватка денег. Наборы для робототехники дороги, а самостоятельно закупать оборудование школы и детские сады зачастую могут в очень скромных объемах.
Роботы вокруг нас
Мы уже сейчас живем в мире роботов, часто не замечая этого. Автоматические двери супермаркетов, лифты, багажные ленты, автоматы самообслуживания – это все роботы. И если для взрослых роботизированный мир наступал постепенно, то наши дети родились уже в нем. Конечно, понимание законов функционирования этого мира, правил взаимодействия с ним для получения необходимого результата здорово упрощает жизнь. А робототехника дает именно эти необходимые знания, делая мир вокруг понятным и предсказуемым.
В советские годы студент на одну стипендию мог съездить в Москву или Ленинград, сходить в пару музеев, кино и даже ресторан. Сейчас студенческой стипендии хватит лишь на поход в магазин. Но, как выяснили корреспонденты «РГ», современные студенты-бюджетники при желании тоже могут позволить себе многое, особенно те, кто хорошо занимался в школьные годы и заинтересован в […]
Подростки зачастую не представляют, что кроется за названием профессии и тем более что предлагает современный рынок труда. Они вдохновляются примерами своих родителей и знакомых, образами в кино и соцсетях. По данным Всероссийского центра изучения общественного мнения (ВЦИОМ), у современных школьников нет четкого понимания при выборе будущей профессии. В 2020 году был проведен опрос в 46 […]
Робототехника в каждом классе: да или нет
Основы робототехники
Робот — это автоматическое устройство, предназначенное для осуществления различного рода механических операций, которое действует по заранее заложенной программе.
Из определения, представленного в «Оксфордском словаре», становится очевидно, что при конструировании и программировании робота необходимо заранее понимать, для каких действий он нужен, каким образом он будет эти действия совершать, как устроить, чтобы он не делал лишнее. ФГОС ВПО разъясняет, что робототехника — это область науки и техники, ориентированная на создание роботов и робототехнических систем, построенных на базе мехатронных модулей.
Виды робототехники в школе
Спортивная. Присутствует в школе и вне ее. Дети участвуют в различных соревнованиях, знают, как достичь тех или иных результатов.
Творческая. Ребенок придумывает такого робота, который будет ему интересен. Чтобы реализовать проект, ученику необходимо разбираться как робототехнике, так и в той области, в которой робот будет применяться.
STEM-технологии в образовании
STEM объединяет четыре предметные области: естественные науки, технологии, инженерное дело, математику. Иногда также включается искусство. Такой подход реализуется в образовательной робототехнике, поскольку и конструирование, и программирование требуют знания разных предметов: математики, информатики, физики, химии, тех предметов, с которыми будут связаны функции роботов (обществознание, биология и т.д.) Ребенок получает Soft Skills («гибкие навыки»), необходимые во многих профессиях. Так робототехника помогает сформировать и личностные, и предметные, и метапредметные компетенции.
Результаты для ученика:
Выражение себя новыми способами.
Достижение конкретного результата.
Развитие критического мышления.
Создание, а не потребление контента.
Освоение нового вида грамотности.
Практика командной работы.
Возможность пробовать и ошибаться.
Решение практических задач.
Развитие навыков говорения (в том числе на иностранных языках).
Оборудование
Наборы для роботостроения. Наборы, из которых собираются роботы теми средствами, которые заложили разработчики. Популярные конструкторы: LEGO Education (некоторые роботы управляются с планшетов, что очень удобно), Mindstorms (много датчиков), Tetrix (для ребят постарше).
Готовые роботы для программирования. Используются те гаджеты, которые есть у ученика или у образовательной организации. Популярные устройства: биоботы, двигающиеся по линии, озоботы, роботы «Сфера» со множеством разных моторов.
Предметы, рисунки, канцелярские принадлежности. Применяются для выстраивания маршрутов, создания алгоритмов, в качестве моделей.
Примеры использования на уроках
География, 5-6 классы. Тема «Землетрясение». С помощью специального набора LEGO ученики строят симулятор землетрясения, способный передавать моделям зданий колебательные движения.
Окружающий мир, 4 класс. Ученики придумывают роботов, приспособленных для выживания в той или иной изученной природной зоне. Они могут смоделировать природную зону и продемонстрировать действия в ней робота.
Математика, 4 класс. Робот «Сфера» помогает иллюстрировать задачи на скорость и расстояние. Также его можно использовать для изображения фигур: фотографировать передвижения робота на высокой выдержке, приспособить к устройству карандаш и т.д.
Математика, 1 класс. В приложениях к роботам первоклассники учатся прокладывать маршруты, работать с командами для разных ситуаций.
Математика, 6 класс. При изучении системы координат можно использовать задачи Learn to Code 3 на языке Swift.
Литературное чтение, 1 класс. На примере сказок дети учатся выстраивать алгоритмы, потому что любую историю можно разложить на тот или иной алгоритм.
Очень важно работать не только в виртуальном пространстве, но и в реальном. Например, в ходе эксперимента ученики узнают, что робот, запрограммированный на определенный угол поворота, может по-разному повести себя на плитке и на линолеуме — это учит детей учитывать окружающие факторы.
Практика показывает, что робототехника действительно помогает учителям проводить уроки и формировать УУД.
Что такое образовательная робототехника сегодня
Я не являюсь специалистом в области педагогики и образования, к детям отношусь сугубо как личностям в начале жизненного пути, а не к «цветам жизни» и преследую цель заинтересовать их и передать им свой опыт. В робототехнике работаю уже несколько лет и имею неподдельный интерес к этой сфере.
Кружков робототехники в России становится всё больше, однако мало кто из родителей понимает, что именно из себя представляет это направление. Большинство относится к нему скептически, считая что всё завязано на обычном LEGO, в которое можно поиграть и дома или же считают что это оторванный от жизни предмет, на который можно отправить ребенка ради его развлечения и отдыха. С другой стороны, некоторые считают это занятие уделом гениев или ботаников. Ну, или что оно способно сделать гения из их ребенка.
На самом же деле, образовательная робототехника не является ни заумным предметом, ни профессией будущего, ни беззаботным развлечением. А является она базой для серьезного изучения прикладных технических навыков, необходимых для будущего технаря уже сейчас.
Безусловно, это занятие не для всех — многие дети не горят желанием изучать «скучную» теорию вместо того чтобы, условно, порезвиться в спортивной секции. Однако, тех, кто любит всё время что-то создавать своими руками, интересуется компьютерной техникой или просто проявляет интерес к любой технике, образовательная робототехника способна обучить многим навыкам, например:
Самое главное — не стоит нацеливаться на конкретные результаты, вроде занятия призовых мест на различных соревнованиях по робототехнике. Они нужны в первую очередь для социализации, созданию интереса к отрасли и духа соревнования. Это тот самый случай, когда во всех смыслах участие важнее победы. Здесь робототехника ближе к художественной школе с её выставками, где главное — на других посмотреть, да себя показать.
В качестве результата обучения можно рассматривать постепенное увеличение сложности создаваемых проектов (как в кружке, так и дома), однако тут всё индивидуально.
Перейдем к наиболее часто задаваемым вопросам:
Чем мы занимаемся на робототехнике?
Строим роботов, конечно! Интересных и разных. Из LEGO. Изучаем, что такое датчики, шестеренки, гусеницы, для чего это нужно и как это использовать. Воспроизводим некоторые приборы из «взрослого мира», вроде парктроника или охранной системы, а еще строим всякие гусеничные вездеходы.
Для всего этого нам часто приходится использовать математику и банальную интуицию. А логическое мышление — вообще наше всё.
Почему «LEGO»?
Образовательные наборы LEGO Mindstorms EV3 являются международным стандартом для образовательной робототехники, так как ни один другой набор не обладает таким уровнем стандартизации, простоты использования и глубины проработки. Выпущенное в 2013-м году третье поколение образовательного робототехнического набора от LEGO, EV3 (в народе «Ева») обладает поистине необъятной широтой возможностей, заложенных в программное обеспечение и аппаратную составляющую, а совместимость с любыми другими наборами LEGO даже 40-летней давности дает очевидную возможность использовать любые детали для строительства конструкций. Кстати, у LEGO в наборах есть шикарно реализованные механические узлы (дифференциалы, элементы различных типов передач, элементы подвески и тд) и даже внятная пневматика. Ни один другой набор не имеет ничего подобного на том же уровне реализации. Есть еще fischertechnik но он относительно редко мне встречался, а цена та-же.
У скептицизма в сторону LEGO есть две причины:
1. Поверхностное знакомство с этим набором. Многие преподаватели из кружков робототехники (даже ВУЗовских!) грешат тем, что плохо знают то, на чем они работают. Будучи не сильно знакомы с основами конструирования механизмов и программирования, они не в состоянии оценить все возможности инструмента, а тем более задействовать их в образовательных целях.
2. Высоко задранный нос у адептов «старой школы». Это о тех, кто заявляет, что те, кто занимаются на LEGO не знают ни о транзисторах-резисторах, и вообще мы тут из готовых блоков всё делаем и блоками-же программируем. Всё они верно говорят. Не знаем. Только робототехника не про электронику и пайку, а про решение практических задач и автоматизацию. Есть еще вариация с «крутыми программистами», которые сходу занимаются программированием микроконтроллеров и миганием светодиодами, напрочь забывая про механическую часть.
В реальности у LEGO Mindstorms всего 2 существенных минуса:
Для какого возраста подходит робототехника?
На самом деле всё очень индивидуально. В возрасте 5-6 лет большинство детей еще остаются в фазе «игра — основа обучения». В этом возрасте главное — приобрести навык созидания, то есть научиться собирать из конструктора самостоятельно, без инструкций и подсказок, по своему разумению. Примерно с 5,5 лет я беру детей на занятия, где у них, по сути, проходят «прописи» — мы собираем из кубиков машинки, самосвалы, самолёты и вертолеты, и оснащаем эти постройки двигателями, чтобы у них крутились колёса и винты (занимаемся на LEGO WEDO 2.0). Программирование даю только тем, кто сам тянется узнать «как оно там происходит».
С 7 лет обычно ребёнок достаточно созревает, чтобы осознанно вникать в сложные вещи без потери интереса. В этом возрасте занимаемся уже на «Еве», осваивая такие понятия как «градус угла, процент, десятичная дробь» (ну а как иначе, тут мы уже с датчиками вплотную работаем). Обычно ни у кого особенных проблем с этим не возникает, если есть интерес к познанию. Проблемы возникают только тогда, когда нам уже нужно что-нибудь делить-умножать, а в школе этого еще не проходили.
10-14 лет — самый эффективный возраст для обучения, поскольку отношение к предмету обычно более серьезное, интерес более профессиональный, и нет страха перед математикой уровня шестого класса. К тому же можно рассказать, для чего нужны эти пресловутые синусы-косинусы, прикладной смысл которых в школе остаётся неизученным.
Также, спустя год обучения, можно перейти с LEGO на свободную элементную базу (одноплатные компьютеры и датчики из китая + алюминиевые профили из строительного магазина).
А что, если купить такое LEGO домой и заниматься самим?
Это вполне здравая идея, если:
Вы обладаете хотя бы минимальными знаниями о механизмах и программировании и способны изучить набор в полной мере самостоятельно. У вас есть лишние
40 т.р. на покупку набора и некоторых дополнительных модулей. Однако даже в этом случае лучше параллельно учиться в кружке, развивая дома те идеи, которые пришли в голову после изучения новой темы.
Почему мы не используем инструкции?
Когда ребенок что-то строит по инструкции, он просто повторяет, не вникая в суть того, для чего та или иная деталь или узел нужен. Безусловно, купить дорогой набор LEGO Tehnic с кучей механики, пневматикой, и не построить предлагаемые модели по инструкции хотя бы ради изучения принципа работы — плохая идея. Эти модели очень сложные и интересные для изучения. Однако у нас в кружке главное — реализовать какой-либо принцип. А вот каким путем — уже проблема учащегося, которую он должен решить, используя свою голову. Пусть даже неправильно, с ошибками, но — сам. Инструкции у нас используются только когда мы собираем модель с очень сложной механикой и/или программой для изучения принципа работы.
Если в кружке собирают по инструкциям постоянно — это свидетельство профессиональной некомпетентности преподавателя. Такое часто наблюдается в кружках по франшизе и при школах.
Исключением можно считать книжки — сборники разнообразных механических узлов из LEGO (и не только). Такая шпаргалка очень полезна при проектировании.
Как происходит процесс программирования?
Для LEGO Mindstorms EV3 есть несколько вариантов:













