Резистивная нагрузка что это

Резистивная, реактивная и резистивно-реактивная нагрузка

Активная, реактивная и полная мощности

Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Реактивная мощность в математических выражениях обозначается прописной буквой Q. Фактическое количество используемой или рассеиваемой в цепи мощности называется активной мощностью и измеряется в ваттах (обозначается, как обычно, прописной буквой P). Комбинация реактивной и активной мощностей называется полной мощностью и является произведением напряжения и тока цепи без учёта угла сдвига фаз. Полная мощность измеряется в вольт-амперах (ВА) и обозначается прописной буквой S.

Как правило, величина активной мощности определяется сопротивлением рассеивающих ее элементов цепи, обычно резисторов (R). Реактивная мощность определяется величиной реактивного сопротивления (X). Полная мощность определяется полным сопротивлением цепи (Z). Поскольку при определении мощности мы имеем дело со скалярными величинами, любые исходные комплексные величины (напряжение, ток и полное сопротивление) должны быть представлены в показательной форме, а не в виде действительных или мнимых составляющих. К примеру, при определении активной мощности по величинам тока и сопротивления необходимо использовать величину тока в полярной системе координат, а не действительную или мнимую часть. При определении полной мощности по напряжению и полному сопротивлению обе эти комплексные величины должны быть представлены в полярной системе координат для применения скалярной арифметики.

Имеется несколько выражений, связывающих три типа мощности со значениями активного, реактивного и полного сопротивления (во всех случаях используются скалярные величины).

P – активная мощность P = I 2 R P = E 2 /R

Единицей измерения является ватт

Q – реактивная мощность Q = I 2 X Q = E 2 /X

Единицей измерения является вольт-ампер реактивный (вар)

S – полная мощность S = I 2 Z S = E 2 /Z S = IE

Единицей измерения является вольт-ампер (ВА)

Обратите внимание, что для определения активной и реактивной мощности имеются два выражения. Для определения полной мощности есть три выражения, P = IE используется только для этой цели. Изучите схемы, приведённые ниже, и посмотрите, как определяются эти три типа мощности при резистивной нагрузке, при реактивной нагрузке и при резистивно-реактивной нагрузке (см. рисунки ниже).

Резистивная нагрузка

Резистивная нагрузка что это. clip image001. Резистивная нагрузка что это фото. Резистивная нагрузка что это-clip image001. картинка Резистивная нагрузка что это. картинка clip image001. Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Активная мощность P = I 2 R = 240 Вт

Реактивная мощность Q = I 2 X = 0 вар

Полная мощность S = I 2 Z = 240 ВА

Активная мощность, реактивная мощность и полная мощность для чисто резистивной нагрузки

Реактивная нагрузка

Резистивная нагрузка что это. clip image002. Резистивная нагрузка что это фото. Резистивная нагрузка что это-clip image002. картинка Резистивная нагрузка что это. картинка clip image002. Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Активная мощность P = I 2 R = 0 Вт

Реактивная мощность Q = I 2 X = 238,73 вар

Полная мощность S = I 2 Z = 238,73 ВА

Активная мощность, реактивная мощность и полная мощность для чисто реактивной нагрузки

Резистивно-реактивная нагрузка

Резистивная нагрузка что это. clip image003. Резистивная нагрузка что это фото. Резистивная нагрузка что это-clip image003. картинка Резистивная нагрузка что это. картинка clip image003. Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Активная мощность P = I 2 R = 119,365 Вт

Реактивная мощность Q = I 2 X = 119,998 вар

Полная мощность S = I 2 Z = 169,256 ВА

Активная мощность, реактивная мощность и полная мощность для резистивно-реактивной нагрузки

Треугольник мощностей, связывающий полную мощность с активной и реактивной мощностями

Эти три типа мощностей можно связать друг с другом в тригонометрической форме. Мы называем это треугольником мощностей (см. рисунок ниже).

Резистивная нагрузка что это. clip image005. Резистивная нагрузка что это фото. Резистивная нагрузка что это-clip image005. картинка Резистивная нагрузка что это. картинка clip image005. Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Используя законы тригонометрии, мы можем определить длину каждой стороны (величину мощности каждого типа), если даны длины двух других сторон или длина одной стороны и угол.

Источник

Резистивная нагрузка что это

Твердотельное реле (ТТР) относится к классу гибридных модульных полупроводниковых приборов, имеющих в составе мощные силовые ключи на симисторных, тиристорных либо транзисторных структурах. Наиболее широкое распространение в промышленности получили именно тиристорные переключатели переменного тока (ТППТ). Однако такое название сложнее запоминается и определяет только приборы переменного тока, что привело к образованию такого термина как твердотельное реле, объединяющее устройства и переменного, и постоянного тока. По большому счету, твердотельное реле – это коммутационный элемент на базе полупроводникового элемента, но включающий в себя схему преобразования сигналов управления полупроводниковым элементом в удобный для использования и применения сигнал. Твердотельные реле обеспечивают надежный метод коммутации цепей и имеют ряд других преимуществ. Рассмотрим их ниже.

Преимущества

Несмотря на все плюсы, ТТР обладает некоторыми несущественными недостатками, которые в конечном счете невелируются благодаря почти бесконечному сроку службы и простоте в обращении. К недостаткам можно отнести высокую стоимость и выделение тепла в рабочем режиме, которое свойственно любому полупроводнику. Вопрос перегрева решается применением радиаторов охлаждения, а также на рынке представлены некоторые модели, конструкция которых позволяет уменьшить выделение тепла (выход SCR-типа).

Советы по выбору ТТР

Из-за электрических потерь на силовых полупроводниковых элементах происходит нагрев твердотельных реле при коммутации нагрузки. Подобное повышение температуры ТТР накладывает ограничение на величину коммутируемого тока, потому что с увеличением температуры уменьшается количество тока, которое реле в состоянии коммутировать. Если температура в 40° C не вызывает существенного ухудшения рабочих параметров, то нагрев твердотельного реле до 70° С существенно ухудшает производительность и может привести к отключению устройства или даже поломке.

Во избежание критических ситуаций во время длительной работы твердотельного реле в номинальных, и в частности, «тяжелых» режимах (при длительной коммутации при токах нагрузки свыше 5 А) требуется применение радиаторов охлаждения. При повышенных нагрузках, например, в случае нагрузки индуктивного характера (соленоиды, электромагниты и т.п.), рекомендуется выбирать твердотельное реле с большим запасом по току (в 2-4 раза), а в случае применения твердотельных реле для управления асинхронным электродвигателем необходим 6-10 кратный запас по току.

При работе с большинством типов нагрузок включение твердотельного реле сопровождается скачком тока (пусковой перегрузкой) различной длительности и амплитуды, и это необходимо учитывать при выборе твердотельного реле.

Для различных типов нагрузок можно указать следующие величины пусковых перегрузок:

Способность твердотельных реле выдерживать токовые перегрузки характеризуются величиной ударного тока, т.е. амплитудой одиночного импульса заданной длительности (обычно 10 мс). Для реле постоянного тока эта величина обычно в 2 – 3 раза превосходит значение максимально допустимого постоянного тока, для тиристорных реле это соотношение около 10. Для токовых перегрузок произвольной длительности можно исходить из эмпирической зависимости: увеличение длительности перегрузки на порядок ведет к уменьшению допустимой амплитуды тока.

Предлагаем следовать простому алгоритму при выборе ТТР:

Для повышения устойчивости твердотельного реле к импульсным помехам параллельно коммутирующим контактам в ТТР имеется цепь, состоящая из последовательно включенных резистора и емкости (RC-цепочка).

Для более полной защиты от источника перегрузки по напряжению со стороны нагрузки необходимо включить защитные варисторы параллельно каждой фазе твердотельного реле, а в случае с ТТР, коммутирующими постоянный ток – защитный диод.

Выбор системы охлаждения

Как уже говорилось выше, твердотельное реле нагревается во время работы, что обусловлено электрическими потерями на силовых полупроводниковых элементах. При этом эффективность прибора падает с возрастанием температуры. Отсюда следует простой вывод о том, что необходимо использовать дополнительные способы охлаждения при длительной работе реле с токами нагрузки свыше 5А для удержания минимальной приемлимой температуры и увеличению эффективности ТТР. Самый очевидный способ улучшить теплоотвод реле – увеличить площадь рассеивания тепла от металлического основания реле. Добиться этого можно установкой твердотельного реле на радиатор охлаждения.

Значение тока нагрузки, обозначенное на шильдике твердотельного реле, указывается из условия нагрева основания реле не выше 40°C.Чем выше температура разогрева реле, тем меньший ток оно способно коммутировать. При нагреве реле свыше 40°С допустимая величина коммутируемого тока снижается и будет меньше заявленного на шильдике реле значения. При 70°С коммутационная способность реле падает вдвое. А при нагреве до 80°С уже возникает тепловой перегрев коммутационного ключа с переходом реле в неуправляемый режим, когда нагрузка включается с помощью ТТР, но отключиться уже не может. В итоге это приводит к тепловому пробою коммутационного элемента и, соответственно, выходу реле из строя. Очевидно, что для нормальной эксплуатации твердотельного реле необходимо обеспечивать отвод тепла от коммутационного элемента, чтобы избежать перегрева и поломки реле.

Резистивная нагрузка что это. image0022. Резистивная нагрузка что это фото. Резистивная нагрузка что это-image0022. картинка Резистивная нагрузка что это. картинка image0022. Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.
Зависимость тока реле от температуры окружающей среды (основания ТТР).

Следует отметить, что работа реле при повышенных температурах (свыше 60 градусов) сокращает ресурс эксплуатации и повышает вероятность выхода реле по другим причинам.

В случае повышенной температуры окружающей среды (свыше 40°С) ТТР не сможет нормально охлаждаться, даже при использовании радиатора с принудительным обдувом. В такой ситуации ТТР будет перегреваться и может выйти из строя. В этом случае возможны два варианта решения:

Использование стандартной серии ТТР при повышенных температурах и без внешнего кондиционирования воздуха возможно, при условии выбора номинального тока реле с учетом его повышенной температуры эксплуатации.

Основное правило выбора радиатора

При выборе радиатора для охлаждения твердотельного реле следует руководствоваться:

Основное правило монтажа радиатора

Установку радиатора охлаждения по месту применения необходимо проводить таким образом, чтобы его ребра охлаждения были параллельны потокам воздуха: при отсутствии принудительной вентиляции – вертикально, по потоку естественной циркуляции воздуха (снизу-вверх), либо в любом положении при наличии принудительного обдува с помощью вентилятора охлаждения. Монтаж всех моделей радиаторов РТР осуществляется на плоскость винтами.

Особое внимание следует уделить установке твердотельного реле на радиатор и проводить её с использованием теплопроводной пасты.

Токи утечки в цепи применительно к твердотельным реле

В общем случае ток утечки – это ток, который протекает в землю или на сторонние проводящие части в неповрежденной электрической цепи.

RC-цепочка (снабберная RC цепь)

RC-цепочка (снабберная RC цепь) – электрическая цепь из последовательно включенных емкости (конденсатора) и сопротивления (применительно к твердотельным реле). Номиналы элементов цепиобычно составляют C=0.1мкФ, R=50 Ом. RC- цепочка повышает надежность работы ТТР в условиях действия импульсных помех (перенапряжений) и ограничивает скорость нарастания напряжения на коммутационном элементе, что особенно важно при коммутации индуктивной нагрузки. Довольно часто RC-цепочку называют сглаживающим фильтром или снабберной цепью.

Как уже упоминалось выше, встроенная в реле RC-цепочка приводит к появлению тока утечкив цепи нагрузки. Величина этого тока очень мала и не оказывает на мощную нагрузку никакого влияния, однако этого тока вполне достаточно для того, чтобы мультиметр показал наличие напряженияна нагрузке, подключенной к реле.

Типы нагрузок твердотельных реле

Твердотельные реле различных производителей ориентированы преимущественно для управления нагрузкой резистивного либо слабоиндуктивного типа, коэффициент мощности которой (cos φ) не ниже 0.7. Обычно это нагревательные элементы различной конструкции и лампы накаливания. В целях снижения уровня создаваемых помех при коммутации нагрузки, такие реле обычно имеют схему контроля перехода через ноль, т. е. осуществляют переключение (включение и выключение) в нуле синусоиды напряжения, когда коммутируемые токи малы.

ТТР с SCR-типом выхода можно использовать для управления нагрузкой индуктивного типа, коэффициент мощности которой (cos φ) более 0,5, например маломощными электродвигателями под нагрузкой, соленоидами, катушками клапанов и т. п. Эти серии реле подходят и для управления резистивной нагрузкой. Реле этого типа также имеют схему контроля переключения в нуле синусоиды напряжения и создают минимальный уровень помех. Для нагрузки высокоиндуктивного типа, коэффициент мощности которой (cos φ) менее 0.5 (например, трансформаторы на холостом ходу и некоторые типы электродвигателей), применение твердотельных реле сопряжено со многими нюансами. В частности, необходимо применять реле со схемой случайного (мгновенного) переключения.

Резистивная нагрузка – электрическая нагрузка в виде сопротивления (резистора), на котором происходит преобразование электрической энергии в тепловую. Для такой нагрузки характерно практически полное отсутствие реактивной мощности, а коэффициент мощности (cos φ) обычно близок к 1.0.

ТЭН – нагреватель в виде металлической трубки, заполненный теплопроводящим электрическим изолятором, в центре которого установлен нагревательный элемент определенного сопротивления. В качестве нагревательного элемента обычно используется нихромовая нить. ТЭН относится к нагрузке резистивного типа с малыми пусковыми токами.

Индуктивная нагрузка – электрическая нагрузка с большой индуктивной составляющей.

К индуктивной нагрузке относятся все потребители, где есть активная и реактивная мощность, а коэффициент мощности (cos φ) менее 1.0, или, простыми словами, любая нагрузка, в составе которой имеются электрические катушки либо обмотки: соленоиды клапанов, трансформаторы, электродвигатели, дроссели и т. п. Характерной особенностью индуктивной нагрузки являются высокие потребляемые токи при её включении (пусковые токи), вызванные переходными электрическими процессами в катушках и обмотках. Значения пусковых токов индуктивной нагрузки могут превышать номинальный ток в несколько десятков раз и быть достаточно длительными по времени, поэтому при применении твердотельного реле для коммутации индуктивной нагрузки необходимо выбирать номинал ТТР с учетом пусковых токов нагрузки. Узнать точное значение пускового тока применяемой нагрузки можно упроизводителя оборудования или оценить из открытых источников для аналогичного оборудования.

Немного о типах выходных силовых элементов твердотельных реле

Твердотельные реле, в зависимости от модификации, могут иметь в качестве выходногоключа один из четырех силовых элементов:

Симисторные выходы используются в твердотельных реле на номинальные токи до 40 А включительно. Разумный предел тока в 40А обусловлен тем, что при двустороннем протекании большего значения тока эффективного отвода тепла от кристалла симистора добиться невозможно.

Тиристорные выходные элементы применяются в твердотельных реле на токи от 60А. Раздельно установленные на охлаждающей подложке, они значительно понижают коэффициент теплового сопротивления реле в целом, что дает возможность обеспечить необходимый отвод тепла.

SCR-тип выхода применяется в реле c токами нагрузки свыше 60–80А. Условное обозначение SCR – это общепринятое международное наименование полупроводникового ключа на базе триодного тиристора (или просто тиристора).

Реле данного типа ориентированы на работу в более сложных эксплуатационных условиях при наличии быстрых переходных процессов в сети питания: работа в сети с большим уровнем помех, работана индуктивную нагрузку, работа в условиях высоких скачков тока нагрузки.

Однако, это не исключает требование применения радиаторов и вентиляторов охлаждения для работы с большими токами коммутации.

Диагности и особенности работы ТТР

Возможность проверки силовых цепей ТТР мультиметром

Коммутационный полупроводниковый ключ в ТТР снабжен дополнительными шунтирующими цепочками, в том числе и RC-цепью, поэтому проверить его исправность с помощью измерений мультиметром не получится. Ни в коем случае не пытайтесь проверять исправность реле мегаомметром или прибором контроля изоляции, поскольку такие приборы генерируют измерительное напряжение высокого уровня и приведут к пробою полупроводникового ключа ТТР. Проверять исправность твердотельного реле лучше всего непосредственным подключением к нему нагрузки, например, маломощной лампы накаливания. Если ТТРисправно, то после подачи сигнала управления лампа будет гореть в полный накал, а при снятии управляющего сигнала полностью гаснуть.

Тепловой перегрев и тепловой пробой ТТР

Проверить, имеет место перегрев реле или тепловой пробой, можно следующим образом: отключить реле от нагрузки, подождать полного остывания реле, затем, не подавая сигнала управления на реле, подключить к нему лампу накаливания и подать питание в цепь нагрузки. Если лампа будет гореть в пол-накала либо в полную мощность, то это будет свидетельствовать о наличии пробоя по одному либо двум коммутационным элементам реле.

Как проверить достаточность принятых мер по охлаждению ТТР?

Проверить правильность режима охлаждения ТТР можно измерив температуру основания реле (металлической пластины корпуса) в местах крепления к радиатору. Если температура близка к 60 °С либо превышает это значение, то охлаждение для реле недостаточно и нужно предпринять дополнительные меры по улучшению теплоотвода. Проводить диагностику реле лучше всего используя бесконтактный термометр (пирометр).

Твердотельное реле включает, но не выключает нагрузку, в чем причина?

В большинстве случаев причиной является попытка использования ТТР предназначенного для напряжения переменного тока с источником питания постоянного тока. В ином случае имеет место пробой коммутационного ключа ТТР, при этом на нагрузке обычно наблюдается наличие одной полуволны сетевого напряжения, т. е. напряжение на нагрузке присутствует, но оно вполовину меньше номинального значения. Такая ситуация является следствием пробоя одного из коммутационных элементовТТР. Ситуация, когда пробиты сразу оба коммутационных ключа, встречается реже. Наиболее вероятными причинами пробоя реле являются:

При возникновении теплового перегрева реле может перейти в неуправляемый режим коммутации, когда даже после снятия сигнала управления с ТТР нагрузка остается включенной, пока не будет отключена цепь питания.

Источник

Резистивная нагрузка что это

Какие типы электрических потребителей бывают? Активная и реактивная нагрузка, активно-индуктивная и активно-емкостная, в чем различия?

В повседневной жизни и общениях с клиентами интернет-магазина Электрокапризам-НЕТ! мы выясняем множество технических вопросов и максимально точно подбираем оборудование под инженерные задачи. Имея большой опыт работ и выбора технических решений специалистами компании НТС-ГРУПП (ТМ Электрокапризам-НЕТ!) была собрана масса полезной информации, которую мы попытались структурировать и в сжатом виде донести нашим клиентам путем публикации на сайте. Ниже приведена своеобразная классификация типа нагрузок с небольшими комментариями, а в следующей статье будут описаны особенности выбора мощности, запаса мощности и варианты использования источников бесперебойного питания, стабилизаторов напряжения и электрогенераторов в сетях с несбалансированным распределением потребителей, с различными видами активной и реактивной нагрузкок и др.

Применительно к выбору оборудования классифицируем типы нагрузок следующим образом

1. По типу электрического потребления нагрузки делятся на:

РЕАКТИВНУЮ, которая также разделяется на такие:

— Ёмкостная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в электрическое поле, а течении следующей половины преобразует энергию электрического поля в электрический ток. При этом в ёмкостной нагрузке кривая тока опережает кривую напряжения на ту же половину полупериода. Примером данного вида нагрузок может быть конденсатор.

На практике чистые реактивные нагрузки в электротехнике не встречаются. Вся электротехника работает с коэфициентом полезного действия ниже 100% вследствие рассеяния части энергии в виде тепловых потерь, потерь при излучении и др. побочных явлений. Таким образом в практической электротехнике применяется понятие активно-реактивной нагрузки. Активно-реактивная нагрузка также подразделяется на две: активно-индуктивная и активно-емкостная.

Активно-индуктивная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной индуктивности. Примером таких нагрузок может быть обмоточный электромагнитный трансформатор, электродвигатель, электромагнитное пускорегулирующее устройство для люминесцентных ламп, катушка зажигания в автомобиле. Для этого вида нагрузок характерен бросок напряжения в момент размыкания электрической цепи.

Активно-ёмкостная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной ёмкости. Примером таких нагрузок может быть конденсатор, электронные блоки питания галогенных или люминесцентных ламп. Для этих нагрузок характерен бросок тока в момент замыкания электрической цепи, особенно если он произошёл в тот момент, когда напряжение в сети максимально, или близко к максимальному.

При протекании тока через активно-реактивную нагрузку часть тока будет протекать через прибор, не производя никакой полезной работы. При этом максимумы и минимумы тока и напряжения будут достигаться в разное время, а кривые изменения по времени тока и напряжения будут не совпадать – оставаясь, при этом, периодическими функциями. Происходит сдвиг тока и напряжения по фазе. Для обозначения зависимости такого сдвига применяется понятие Косинус угла между током и напряжением, и обозначается как cos( ϕ ). Этот параметр является очень важным в электротехнике, которым не стоит пренебрегать при расчетах и выборе стабилизаторов напряжения, источников бесперебойного питания и электрогенераторов.

2. Фазность электропотребителей:

— однофазные –потребители рассчитанные на электропитание от 220/230В по схеме фаза-ноль-земля.

— трехфазные – потребители для которых необходимо подать напряжение 380В/400В в схеме с нейтралью и землей.

3. По способу распределения нагрузки (для трехфазных схем)

— Сбалансированные – сбалансированными считают такое распределение постребителей, когда на каждой фазе в трехфазной схеме мощности нагрузок распределены равномерно (с перекосом не более +/-20%). В качестве примера можно привести коттедж с трехфазным вводом электроснабжения, в котором при проектировании и монтаже электрических потребителей 15 кВт мощности равномерно распределили по 5 кВт на каждую фазу. Еще одним примером можно выделить промышленный цех, в котором преобладают трехфазные потребители и таким образом все три фазы будут нагружены равномерно.

— Несбалансированные – характеризуются как хаотично-нагруженные фазы, где нагруженность фаз может отличаться на 100% между собой. Примером может служить частный трехэтажный дом в котором на каждый этаж отводится одна фаза. Как показывает практика первый этаж дома (т.е. одна из фаз) обычно перегружена в силу того, что на первом этаже размещаются: кухня, бойлерная и комната отдыха, а на остальных этажах спальни с бытовой техникой. В итоге одна фаза может быть нагружена на 100%, а другие используются редко или не сильно нагружены.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *