Рекрутирование мышечных волокон что это
Биомеханика мышечного сокращения
В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков
Глава 1. Модели систем организма
1.1.5. Биомеханика мышечного сокращения
Сила — векторная величина, являющаяся мерой механического воздействия на материальную точку или тело со стороны других тел или полей (Б. М. Яворский, А. А. Детлаф, 1974). Сила полностью задана, если указаны ее численное значение, направление и точка приложения.
В теории и методике физического воспитания рассматривают физическое качество силу как способность человека напряжением мышц преодолевать механические и биомеханические силы, препятствующие действию (Зациорский В. М., 1972; Л. П. Матвеев, 1991).
Мышцы могут проявлять силу: без изменения своей длины (изометрический режим), при уменьшении длины (изотонический режим), при удлинении (эксцентрический режим), при использовании специальной аппаратуры возможно соблюдение изокинетического режима (в ходе сокращения мышц соблюдается либо постоянная скорость, либо сила).
Силовое проявление мышцы зависит от:
— интенсивности активации мотнейронного пула спинного мозга данной мышцы;
— количества активированных двигательных единиц и мышечных волокон;
— количества миофибрилл в каждом мышечном волокне;
— скорости сокращения миофибрилл, которая зависти от активности миозиновой АТФ-азы и величины внешнего сопротивления;
— законов механики мышечного сокращения (сила — длина мышцы, сила — скорость сокращения);
— начального состояния исполнительного аппарата (утомленные мышечные волокна демонстрируют меньшую силу).
Спортсмен при желании сократить какую-либо мышцу активизирует соответствующий двигательный нейрон в коре головного мозга, который посылает импульсы в спинной мозг к мотонейронному пулу, обслуживающему данную мышцу. Поскольку в мотонейронном пуле размеры мотонейронов различаются, то при низкой частоте импульсации из ЦНС могут активироваться только низкопороговые мотонейроны. Каждый мотонейрон иннервирует свои мышечные волокна. Поэтому активация мотонейрона приводит к рекрутированию или возбуждению соответствующих мышечных волокон. Каждое активное мышечное волокно под влиянием электрических импульсов выпускает из СПР ионы кальция, которые снимают ингибитор с активных центров актина. Это обеспечивает образование актин-миозиновых мостиков и начало их поворота и мышечного сокращения. На поворот мостиков и отсоединение актина от миозина тратится энергия одной молекулы АТФ. Продолжительность работы мостика составляет 1 мс. Вероятность образования мостиков зависит от взаимного расположения между собой нитей актина и миозина, отсюда возникает зависимость сила — длина активной мышца, а также от скорости взаимного перемещения (скольжения) их одной по отношению к другой, соответственно, имеем зависимость «сила-скорость».
Зависимость «сила — длина активного мышечного волокна» определяется, как правило, относительным расположением между собой головок миозина и активных центров актина. Максимальное количество мостиков возникает при некоторой средней длине мышцы. Отклонение от этой длины в большую или меньшую сторону ведет к снижению силовых проявлений мышечного волокна (мышцы). Однако, в случае растяжения некоторых мышц, еще не в активном состоянии, могут возникать значительные силы сопротивления растяжению, например, в мышцах сгибателях голеностопного или лучезапястного сустава. Эти силы связаны с растяжением соединительных тканей, например, перемезиума. В биомеханике в таком случае говорят о параллельном упругом компоненте мышцы. Упругостью обладают сухожилия, зет-пластинки саркомеров и нити миозина, к которым прикреплены головки. Такую упругость называют последовательной упругой компонентой.
Растягивание активной мышцы приводит не только к накоплению энергии упругой деформации в последовательной упругой компоненте, но и к прекращению работы мостиков, а именно, они перестают отцепляться за счет энергии молекул АТФ. Разрыв мостиков происходит благодаря действию внешней — механической силы. В итоге отрицательная работа мышц выполняется с очень высоким коэффициентов полезного действия, с минимальными затратами АТФ, а значит и кислорода.
Влияние тренировки с большими отягощениями на гипертрофию скелетных мышц
В статье рассмотрены вопросы гипертрофии скелетных мышц под влиянием интенсивных тренировок с позиций разных медико-биологических дисциплин: гистологии, анатомии, физиологии, биохимии, спортивной медицины и биомеханики. Влияние больших отягощений связывается с правилом Хенеманна, объясняющим порядок рекрутирования различных типов ДЕ а также с механическим повреждением мышечных волокон.
Самсонова, А.В. Влияние тренировки с большими отягощениями на гипертрофию скелетных мышц человека /А.В. Самсонова // Труды кафедры биомеханики: сборник статей. НГУ им. П.Ф. Лесгафта, Санкт-Петербург; под общей редакцией А.В. Самсоновой, В.Н. Томилова.- СПб.: [б.и.], 2009.– Вып.3.– С. 8-16.
Самсонова А.В.
Влияние тренировки с большими отягощениями на гипертрофию скелетных мышц
Введение
Уже в середине ХХ века было установлено, что тренировка с применением больших отягощений приводит к возрастанию силы скелетных мышц и их гипертрофии. Тренировка с малыми отягощениями, которые повторялись многократно, такого эффекта не вызывала (T.L.DeLorme, 1945). Найденная эмпирическим путем закономерность в настоящее время активно используется в атлетизме для увеличения массы мышц и их силы (А.Н.Воробьев, 1988; Д.Вейдер, 1992; С.МакРоберт, 1997; А.С.Медведев, 1998; А.Шварценеггер, 2003; В.Н.Курысь, 2004; Л.С.Дворкин, 2005, В.Н.Платонов, 2005; M.H.Stone, M.Stone, W.A.Sands, 2007; T.R.Baechle et all., 2008; V.M.Zatsiorsky, W.J.Kraemer, 2008; Г.П. Виноградов, 2009; Я.Кинг, Лу Шулер, 2009). Однако до настоящего времени не до конца объяснены процессы, происходящие в мышце при выполнении силовых упражнений с большими отягощениями.
Результаты
В основе междисциплинарного подхода, используемого в данной статье, лежит описание феномена гипертрофии мышц при тренировке с большими отягощениями с позиций различных научных дисциплин: гистологии, анатомии, физиологии, биохимии, спортивной медицины и биомеханики.
Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«
Существуют различные типы мышечных волокон: медленные, быстрые и промежуточные, табл. 1. Основная функция волокон I типа – выполнение длительной работы низкой интенсивности. Они активны также при поддержании позы. Мышечные волокна IIА и IIВ (IIX) типа способны сокращаться с большой силой и скоростью.
Таблица 1
Основу сократительного аппарата мышечных волокон скелетных мышц человека составляют миофибриллы, которые в свою очередь состоят из саркомеров. Саркомеры соединяются друг с другом посредством Z-дисков. Внутри саркомера находится М-диск. Саркомеры состоят из толстых и тонких филаментов. Основу толстых филаментов составляет белок миозин, тонких – актин. Тонкие филаменты крепятся к Z-диску, толстые – к М-диску. При помощи белка титина толстые филаменты соединены с Z-диском (рис.1).
Рис. 1. Схема строения саркомера (по: G.H.Pollak, 1990)
При сокращении мышцы тонкие филаменты скользят относительно толстых, расстояние между Z-дисками уменьшается, длина саркомера укорачивается. Одновременное сокращение всех саркомеров приводит к уменьшению длины миофибриллы и мышечного волокна. Ввиду того, что саркомер представляет собой не плоскую, а объемную структуру, при его сокращении происходит также увеличение площади его поперечного сечения (когда тонкие нити входят в промежутки между толстыми), площади поперечного сечения мышечных волокон и всей мышцы.
Физиологами найдено, что управление мышцей со стороны ЦНС осуществляется посредством активации двигательных единиц[1]. По классификации Р.Берка с соавт. (R.E.Burke et all. 1973) ДЕ делятся на три типа: S (slow) – медленные, устойчивые к утомлению; FR (fast resistant) – быстрые, устойчивые к утомлению, FF – fast fatigable – быстрые, быстроутомляемые. ДЕ различных типов соответствуют различные виды мышечных волокон (табл. 2). Строение и функции мотонейрона соответствуют морфологическим характеристикам мышечных волокон, которые он иннервирует. Так мотонейрон ДЕ типа S имеет небольшое клеточное тело и иннервирует от 10 до 180 мышечных волокон, а мотонейрон ДЕ типа FF – имеет большое клеточное тело и иннервирует от 300 до 800 мышечных волокон (Дж.Уилмор, Д.Л.Костилл, 1997).
Таблица 2 Соответствие типов ДЕ и видов мышечных волокон
Число ДЕ, активных в процессе сокращения мышцы, определяется «принципом размера». Установлено, что имеется стабильный порядок вовлечения в работу (рекрутирования) ДЕ: вначале рекрутируются ДЕ S типа, затем FR типа, последними в сокращение вовлекаются ДЕ FF типа (E.Henneman, C.B.Olson, 1965). Если внешнее сопротивление небольшое (менее 20% от 1 RM)[2] рекрутируются только мышечные волокна I типа, при этом уровень силы, развиваемый мышцей, невысокий (В.С.Гурфинкель, Ю.С.Левик, 1985; В.Н.Платонов, 2005). Для преодоления большого внешнего сопротивления (более 70% 1 RM) мышца должна развить большую силу. Поэтому в сокращение последовательно вовлекаются все типы мышечных волокон, в том числе и IIB типа (рис. 2).
Рис.2. Вовлечение в работу мышечных волокон различного типа в зависимости от интенсивности работы и квалификации спортсменов
Обозначения: а – лица, не занимающиеся спортом, б – квалифицированные спортсмены; 1 – мышечные волокна I типа, 2 – мышечные волокна IIA типа, 3 – мышечные волокна IIB типа, 4 – волокна не вовлеченные в работу. По: В.Н.Платонову, 2005
Специалистами в области спортивной медицины установлено, что тренировка с применением больших отягощений вызывает мышечные боли у спортсменов, как во время, так и после ее окончания (Б.И.Прилуцкий, 1989; В.И.Морозов, Г.А.Сакута, М.И.Калинский, 2006; Г.А.Макарова, 2008). Существует несколько гипотез о природе болезненных ощущений в мышцах. Так, факторами, вызывающими мышечные боли называют: повреждение миофибрилл и мышечных волокон; повреждение соединительной ткани; накопление в мышце продуктов метаболизма, в том числе молочной кислоты; локализованный спазм ДЕ. Однако, как указывает М.Дж.Алтер, (2001) в настоящее время накоплено достаточное количество фактов, свидетельствующих о том, что болезненные ощущения в мышцах в первую очередь связаны с их повреждением, рис.3.
Установлено, что механические повреждения мышечных волокон более существенны при эксцентрическом режиме сокращения мышцы (J.Friedén, M.Siöström,1983; B.Ekblom J.Fridé n, R.L. Lie ber, 1992; Gibala, M.J., 1995; Е. Hagbie et all., 1996; T.N.Shepstone et all.,2005). Так, по данным M.J.Gibala, (1995) выполнение гипертрофической силовой тренировки (8 подходов с 8 повторениями и внешней нагрузкой, составляющей 80% от 1 RM) в эксцентрическом режиме сокращения мышц приводит к повреждению 82% мышечных волокон, в концентрическом – только 33%.
С биомеханической точки зрения при выполнении силовых упражнений с большими отягощениями в эксцентрическом режиме внутренние силы, возникающие при взаимодействии толстых и тонких филаментов, стремятся уменьшить длину саркомера, а, следовательно, и всего сократительного компонента мышцы. Однако под действием внешней силы длина мышцы увеличивается. Такой характер работы может привести к разрыву и повреждению миофибрилл и мышечных волокон (А.Дж.Мак-Комас, 2001).
Установлено, что более сильные повреждения обнаруживают в волокнах II типа (J.Frieden, M.Siostrom, B.Ekblom,1983), дающих максимальный прирост площади поперечного сечения мышцы. Мы предполагаем, что это связано с тем, что миофибриллы волокон II типа имеют более тонкие по сравнению с волокнами I типа Z— и М-диски, которые легче повреждаются. Следствием этого является разрыв миофибрилл и мышечных волокон.
Повреждение мышечных волокон проявляется на биохимическом уровне: в крови появляются цитоплазматические и структурные белки (А.Дж.Мак-Комас, 2001). По их количеству можно оценить степень повреждения мышцы (В.И.Морозов, Г.А.Сакута, М.И.Калинский, 2006). По мнению исследователей наиболее информативными маркерами повреждения являются уровень активности фермента креатинкиназы и концентрация миоглобина в плазме или сыворотке крови. Показано, что после эксцентрических упражнений уровень креатинкиназы в крови возрастает от 5 до 10 раз (А.Дж.Мак-Комас, 2001). Исследования M. Guerrero et all. (2008) свидетельствуют о том, что при повреждениях мышц первой степени (самых незначительных) концентрация в крови быстрой формы фермента миозин-АТФ-азы («быстрый» миозин) в два раза больше, чем медленной («медленный» миозин). Быстрая форма фермента миозин-АТФ-азы присуща волокнам II типа, медленная – волокнам I типа. Это подтверждает гипотезу о том, что волокна II типа повреждаются легче, чем волокна I типа.
Повреждение мышечных волокон и миофибрилл приводит к запуску процессов регенерации, в которых большую роль играют клетки-сателлиты (А.Н.Студитский, 1972, 1980; А.Дж.Мак-Комас, 2001; В.И.Морозов, Г.А.Сакута, М.И.Калинский, 2006; K.Shortreed, A.Johnstom,T.J.Hawke, 2007). Результатом процессов регенерации является повышенный синтез белка и гипертрофия мышц (А.Дж.Мак-Комас, 2001; T.R.Baechle et all., 2008; V.M.Zatsiorsky, W. J, Kramer, 2008).
Выводы и заключение
В статье предложен междисциплинарный подход к проблеме влияния тренировки с большими отягощениями на гипертрофию скелетных мышц спортсменов. Гистологами установлено, что волокна II типа имеют более тонкие по сравнению с мышечными волокнами I типа Z- и M-диски. Мы предполагаем, что из-за этих особенностей волокна II типа легче повреждаются. Эта гипотеза подтверждается исследованиями J.Frieden, M.Siostrom, B.Ekblom (1983), которые показали, что при выполнении эксцентрических сокращений мышц на велоэргометре более сильные повреждения обнаруживаются в волокнах II типа. Биохимическими исследованиями установлено, что при повреждениях мышц первой степени, концентрация «быстрого» миозина в крови в два раза больше, чем «медленного» (M. Guerrero et all., 2008). Так как «быстрый» миозин является специфическим маркером мышечных волокон II типа, это свидетельствует об их большем повреждении.
Гипотеза механического повреждения мышечных волокон и их последующей регенерации подтверждается фактами, полученными представителями спортивной медицины о наличии болезненных ощущений в мышцах при выполнении силовых упражнений с большими отягощениями во время и после окончания тренировочного занятия (синдром DOMS).
Физиологический «принцип размера» позволяет понять, почему тренировка с большими отягощениями приводит к значительной гипертрофии скелетных мышц. Главным фактором является вовлечение в деятельность всех типов ДЕ и особенно FR и FF типа, в состав которых входят мышечные волокна II типа. Эти мышечные волокна легче повреждаются. Повреждение мышечных волокон запускает процессы регенерации, которые приводят к гипертрофии мышцы. Биомеханический анализ процесса сокращения саркомера позволяет уяснить, каким образом происходит повреждение Z- и M- дисков при тренировке с большими внешними отягощениями.
Литература
[1] Двигательная единица (ДЕ) – мотонейрон и иннервируемые им мышечные волокна.
[2] 1 RM – внешнее сопротивление, которое спортсмен способен преодолеть один раз.
Физиология мышечной деятельности
В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков
Глава 1. Модели систем организма
1.1.4. Физиология мышечной деятельности
Биохимия и физиология мышечной активности при выполнении физической работы может быть описана следующим образом. Покажем с помощью имитационного моделирования как разворачиваются физиологические процессы в мышце при выполнении ступенчатого теста.
Предположим, что мышца (например, четырехглавая мышца бедра) имеет ММВ 50 %, амплитуда ступеньки — 5 % максимальной алактатной мощности, величина которой принята за 100 %, длительность — 1 мин. На первой ступеньке в связи с малым внешним сопротивлением рекрутируются, согласно «правилу размера» Ханнемана, низкопороговые ДЕ (МВ). Они имеют высокие окислительные возможности, субстратом в них являются жирные кислоты. Однако первые 10 20 с энергообеспечение идет за счет запасов АТФ и КрФ в активных МВ. Уже в пределах одной ступеньки (1 мин.) имеет место рекрутирование новых мышечных волокон, благодаря этому удается поддерживать заданную мощность на ступеньке. Вызвано это снижением концентрации фосфогенов в активных МВ, то есть силы (мощности) сокращения этих МВ, усилением активирующего влияния ЦНС, а это приводит к вовлечению новых ДЕ (МВ). Постепенное ступенчатое увеличение внешней нагрузки (мощности) сопровождается пропорциональным изменением некоторых показателей: растет ЧСС, потребление кислорода, легочная вентиляция, не изменяется концентрация молочной кислоты и ионов водорода.
При достижении внешней мощности некоторого значения наступает момент, когда в работу вовлекаются все ММВ и начинают рекрутироваться промежуточные мышечные волокна (ПМВ). Промежуточными мышечными волокнами можно назвать те, в которых массы митохондрий недостаточно для обеспечения баланса между образованием пирувата и его окислением в митохондриях. В ПМВ после снижения концентрации фосфогенов активизируется гликолиз, часть пирувата начинает преобразовываться в молочную кислоту (точнее говоря, в лактат и ионы водорода), которая выходит в кровь, проникает в ММВ. Попадание в ММВ (ОМВ) лактата ведет к ингибированию окисления жиров, субстратом окисления становится в большей мере гликоген. Следовательно, признаком рекрутирования всех ММВ (ОМВ) является увеличение в крови концентрации лактата и усиление легочной вентиляции. Легочная вентиляция усиливается, в связи с образованием и накоплением в ПМВ ионов водорода, которые при выходе в кровь взаимодействуют с буферными системами крови и вызывают образование избыточного (неметаболического) углекислого газа. Повышение концентрации углекислого газа в крови приводит к активизации дыхания (Физиология человека, 1998).
Таким образом, при выполнении ступенчатого теста имеет место явление, которое принято называть аэробным порогом (АэП). Появление АэП свидетельствует о рекру-тировании всех ОМВ. По величине внешнего сопротивления можно судить о силе ОМВ, которую они могут проявить при ресинтезе АТФ и КрФ за счет окислительного фосфори-лирования (Селуянов В. Н. с соав., 1991).
Дальнейшее увеличение мощности требует рекрутирования более высокопороговых ДЕ (ГМВ), в которых митохондрий очень мало. Это усиливает процессы анаэробного гликолиза, больше выходит лактата и ионов Н в кровь. При попадании лактата в ОМВ он превращается обратно в пируват с помощью фермента ЛДГ Н (Karlsson, 1971,1982). Однако мощность митохондриальной системы ОМВ имеет предел. Поэтому сначала наступает предельное динамическое равновесие между образованием лактата и его потреблением в ОМВ и ПМВ, а затем равновесие нарушается, и некомпенсируемые метаболиты — лактат, Н, СО2 — вызывают резкую интенсификацию физиологических функций. Дыхание один из наиболее чувствительных процессов, реагирует очень активно. Кровь при прохождении легких в зависимости от фаз дыхательного цикла должна иметь разное парциальное напряжение СО2. «Порция» артериальной крови с повышенным содержанием СО2 достигает хеморецепторов и непосредственно модулярных хемочувствительных структур ЦНС, что и вызывает интенсификацию дыхания. В итоге СО2 начинает вымываться из крови так, что в результате средняя концентрация углекислого газа в крови начинает снижаться. При достижении мощности, соответствующей АнП, скорость выхода лактата из работающих гликолитических МВ сравнивается со скоростью его окисления в ОМВ. В этот момент субстратом окисления в ОМВ становятся только углеводы (лактат ингибирует окисление жиров), часть из них составляет гликоген ММВ, другую часть — лактат, образовавшийся в гликолитических МВ. Использование углеводов в качестве субстратов окисления обеспечивает максимальную скорость образования энергии (АТФ) в митохондриях ОМВ. Следовательно, потребление кислорода или (и) мощность на анаэробном пороге (АнП) характеризует максимальный окислительный потенциал (мощность) ОМВ (Селуянов В. Н. с соав., 1991).
Дальнейший рост внешней мощности делает необходимым вовлечение все более высокопороговых ДЕ, иннервирующих гликолитические МВ. Динамическое равновесие нарушается, продукция Н, лактата начинает превышать скорость их устранения. Это сопровождается дальнейшим увеличением легочной вентиляции, ЧСС и потребления кислорода. После АнП потребление кислорода в основном связано с работой дыхательных мышц и миокарда. При достижении предельных величин легочной вентиляции и ЧСС или при локальном утомлении мышц потребление кислорода стабилизируется, а затем начинает уменьшаться. В этот момент фиксируют МПК.
Таким образом, МПК есть сумма величин потребления кислорода окислительными МВ (ММВ), дыхательными мышцами и миокардом.
Гипертрофия скелетных мышц человека под воздействием различных средств и методов силовой тренировки
Рассмотрены механизмы гипертрофии мышц человека под влиянием отягощений различной массы, различных режимов мышечного сокращения и метода тренировки «до отказа». Предложен системный подход для описания влияния различных средств и методов тренировки на гипертрофию мышц человека. Показано, что основной механизм гипертрофии мышц связан с повреждением мышечных волокон, их последующей регенерацией и гипертрофией.
Самсонова, А.В. Гипертрофия скелетных мышц человека под воздействием различных средств и методов силовой тренировки /А.В.Самсонова // Научно-педагогические школы университета. Научные труды. Ежегодник 2014.- СПб: НГУ им. П.Ф.Лесгафта.- С.11-23.
Самсонова А.В.
Гипертрофия скелетных мышц человека под воздействием различных средств и методов силовой тренировки
Введение
Гипертрофия скелетных мышц (увеличение их массы или объема) является предметом исследования многих научных дисциплин, таких как: анатомия, гистология, биохимия, физиология, спортивная медицина, биомеханика и конечно, атлетизм. Благодаря тому накоплен большой арсенал научных знаний об этом феномене. Столь пристальное внимание к этому феномену связано с тем, что гипертрофия скелетных мышц лежит в основе увеличении их силы. Однако анализ существующей научно-методической литературы свидетельствует о том, что до настоящего времени отсутствует целостная концепция, объясняющая механизм воздействия физической нагрузки на гипертрофию скелетных мышц. В связи с этим цель исследования состояла в разработке концепции гипертрофии скелетных мышц под воздействием различных средств и методов силовой тренировки с позиций системного подхода.
Результаты
Уже в середине ХХ века в реабилитационной медицине был установлен факт быстрого восстановления массы и силы скелетных мышц после их атрофии посредством тренировки с использованием значительных внешних отягощений (70-80% от максимума). Тренировка с малыми отягощениями (30-40% от максимума), такого эффекта не вызывала (T.L. DeLorme, 1945). Найденная эмпирическим путем закономерность в настоящее время активно используется в атлетизме (А.Н. Воробьев, 1988; V.M. Zatsiorsky, W.J. Kraemer, 2006; Г.П. Виноградов, 2009). Чтобы понять механизм воздействия отягощений различной массы на увеличение объема скелетных мышц необходимо привлечь знания из ряда медико-биологических дисциплин. Из анатомии и гистологии известно, что скелетные мышцы человека состоят из мышечных волокон (МВ) различного типа: медленных (I типа) и быстрых (IIA и IIВ типа). МВ I типа характеризуются невысокой скоростью и силой сокращения, однако способность сопротивляться утомлению у них очень высока. Мышечные волокна IIВ типа способны сокращаться с большой силой и скоростью, однако сопротивление утомлению у них низкое. Волокна IIA типа характеризуются промежуточными свойствами. Основу сократительного аппарата мышечных волокон скелетных мышц человека составляют миофибриллы, которые состоят из секций – саркомеров, отделенных друг от друга Z-дисками. Гистологами установлено, что медленные волокна I типа имеют более толстые Z-диски по сравнению с быстрыми волокнами II типа (H. Hoppeler, 1986). Между собой миофибриллы на уровне Z-дисков связаны цитоскелетными белками. Помимо этого периферические миофибриллы прикреплены к внутренней оболочке мышечного волокна посредством костамеров (рис.1). Саркомер подобен связке шестигранных карандашей (в саркомере их больше 300), грифелем которых служит толстый филамент, а ребрами – тонкие филаменты. При сокращении мышцы тонкие филаменты скользят относительно толстых, расстояние между Z-дисками уменьшается, саркомер укорачивается. Одновременное сокращение всех саркомеров приводит к уменьшению длины миофибриллы и мышечного волокна. Ввиду того, что саркомер представляет собой не плоскую, а объемную структуру, при его сокращении происходит также увеличение площади его поперечного сечения (когда тонкие нити входят в промежутки между толстыми), площади поперечного сечения мышечных волокон и всей мышцы. Физиологами найдено, что управление мышцей со стороны ЦНС осуществляется посредством активации двигательных единиц (ДЕ). По классификации Р. Берка с соавт. (R.E. Burke et all. 1973) ДЕ делятся на три типа: S (slow) – медленные, устойчивые к утомлению; FR (fast resistant) – быстрые, устойчивые к утомлению, FF – fast fatigable – быстрые, быстроутомляемые. ДЕ различных типов соответствуют различные виды мышечных волокон. В состав двигательных единиц типа S входят мышечные волокна I типа. В состав двигательных единиц типа FR – IIA типа. В состав двигательных единиц типа FF – входят мышечные волокна IIB типа.

Количество ДЕ, активных в процессе сокращения мышцы, определяется посредством центральных и рефлекторных механизмов регуляции силы мышц (А.Г. Фельдман, 1979). Установлено, что имеется стабильный порядок вовлечения в работу (рекрутирования) ДЕ: вначале рекрутируются ДЕ S типа, затем FR типа, последними в сокращение вовлекаются ДЕ FF типа (E. Henneman, C.B. Olson, 1965). Концепция, объясняющая воздействие больших отягощений на увеличение силы и гипертрофию скелетных мышц состоит в следующем. Если внешнее отягощение небольшое (например, масса штанги составляет менее 20% максимума) при выполнении силового упражнения рекрутируются только мышечные волокна I типа, при этом уровень силы, развиваемый мышцей, невысокий (В.С. Гурфинкель, Ю.С. Левик, 1985). Для преодоления большого внешнего отягощения (более 70% от максимума) мышца должна развить большую силу. Поэтому в сокращение последовательно вовлекаются все типы мышечных волокон, в том числе и IIB типа (рис.2).

мышечных волокон (Дж. Х.Уилмор, Д.Л. Костилл, 1997)
Специалистами в области спортивной медицины установлено, что тренировка с применением больших отягощений вызывает мышечные боли у спортсменов, как во время, так и после ее окончания (Б.И. Прилуцкий, 1989; В.И. Морозов, Г.А. Сакута, М.И. Калинский, 2006; Г.А. Макарова, 2008). В настоящее время накоплено достаточное количество фактов, свидетельствующих о том, что болезненные ощущения в мышцах в первую очередь связаны с их повреждением. Повреждение мышечных волокон вызывает воспаление, что ощущается как боль в мышцах через 24 часа и более. Последующая регенерация мышечных волокон приводит к их гипертрофии.
Различают несколько режимов сокращения мышц: преодолевающий (концентрический) – длина мышцы уменьшается, уступающий (эксцентрический) – длина мышцы увеличивается, изометрический (статический) – длина мышцы не изменяется. P.J. Rasch и L.J. Morehouse (1957) одними из первых показали, что динамические упражнения по сравнению с изометрическими вызывают больший прирост силы и площади поперечного сечения мышц. Показано, что тренировка с использованием эксцентрического режима приводит к несколько большей гипертрофии мышц, чем другие режимы сокращения (M.J.Gibala et al. 1995; Е. Hagbie et al. 1996; J.Y. Seger, B. Arvidsson, A. Thorstensson, 1998; M.J. Gibala et al. 2000). Установлено, что гипертрофия мышечных волокон при работе в эксцентрическом режиме больше, чем при концентрическом (S.L.Lindstedt, P.C. LaStayo, T.E. Reich, 2001).
Исследования, проведенные на гистологическом уровне, свидетельствуют о том, что при выполнении упражнений в эксцентрическом режиме в большей степени повреждается цитоскелет и Z-диски мышечного волокна по сравнению с тренировкой в других режимах (J. Friden, M. Sjostrom, B. Ekblom, 1983; J.Friden, R.L. Lieber, 2001), рис.3. Установлено, что степень повреждения Z-дисков мышечных волокон II типа в три раза больше, чем у волокон I типа (J. Friden, M. Sjostrom, B. Ekblom, 1983).

Исследованиями M.J. Gibala etal. (1995) показано, что даже однократная силовая тренировка в эксцентрическом режиме вызывает у начинающих спортсменов повреждение более 82% мышечных волокон, а в концентрическом – только 33%, при этом во время эксцентрических сокращений суммарная ЭАМ на 40% меньше, чем во время концентрических. У хорошо тренированных спортсменов аналогичная тренировка приводит к 45% повреждений мышечных волокон при работе в эксцентрическом режиме и 27% при работе в концентрическом режиме (M.J. Gibala et al. 2000). Биохимические данные свидетельствуют о том, что на третий-пятый день после эксцентрических сокращений, в крови исследуемых значительно возрастает уровень креатинкиназы и миоглобина, что свидетельствует о сильных повреждениях мышечных волокон. При этом он значительно превышает аналогичные показатели, полученные при выполнении движений в концентрическом режиме (J.A. Faulkner, S.V. Brooks, J.A. Opiteck, 1993; A.P. Lavender, K. Nosaka, 2006; K. Nosaka, 2008). На основе изучения биомеханических характеристик развития усилия мышцей M.J. Gibala et al. (1995) было показано (рис.4), что после одного тренировочного занятия силовыми упражнениями значения максимального момента силы двуглавой мышцы плеча, измеренного в изометрическом режиме, понизились как у руки, выполнявшей движения в концентрическом, так и у руки, выполнявшей движения в эксцентрическом режимах сокращения (р≤0,05). Однако через 24 часа этот показатель, измеренный у руки, работающей в концентрическом режиме достоверно не отличался от базового уровня (р>0,05). В то же время значения максимального момента силы, у руки, выполняющей эксцентрические сокращения, достоверно отличались от начального уровня через 24, 48, 72 и даже 96 часов (р≤0,05). Следует отметить, что растяжение пассивной мышцы не приводит к ее гипертрофии (J.R. Fowles et al. 2000).

Концепция, описывающая последовательность событий, приводящих к большему повреждению мышечных волокон при работе в эксцентрическом режиме по сравнению с концентрическим и изометрическим состоит в следующем. Для того, чтобы мышца, выполняющая статическую работу, начала удлиняться, момент внешних сил должен превосходить момент силы тяги мышцы. Это возможно только в том случае, если часть двигательных единиц будет деактивирована, то есть прекратит свою активность и, как следствие – будет уменьшено количество активных мышечных волокон. V. Eloranta, P.W. Komi (1980) и M.J.Gibala et al. (1995) находят, что этот механизм управления ДЕ лежит в основе эксцентрических сокращений мышцы. Это предположение подтверждается исследованиями метаболических затрат и суммарной ЭАМ, которые меньше при работе в эксцентрическом
режиме по сравнению с другими режимами. Вследствие деактивации части ДЕ момент внешней силы становится больше момента силы, развиваемого мышцей и, как следствие – активная мышца начинает удлиняться. Удлинение мышцы сопровождается удлинением мышечных волокон и миофибрилл, так как миофибриллы внутри мышечного волокна имеют «жесткую» привязку к его мембране посредством костамеров и элементов цитоскелета. Удлинение миофибрилл возможно только за счет увеличения длины элементов миофибрилл – саркомеров. Удлинению саркомера, находящегося в активном состоянии, препятствуют силы, возникающие между его толстыми и тонкими филаментами, которые стремятся уменьшить его длину. В связи с тем, что значение внешнего момента силы превосходит момент силы, развиваемый сократительными элементами мышцы, саркомер растягивается. Следствием этого является повреждение элементов цитоскелета и мембранного скелета мышечных волокон, а также повреждение Z-дисков миофибрилл (J. Friden, U. Kjorell, R.L. Lieber, 1984). Таким образом, большее воздействие эксцентрического режима работы на гипертрофию скелетных мышц связано также с их повреждением.
3. Влияние на гипертрофию скелетных мышц силовой тренировки методом «до отказа»
Метод повторных непредельных усилий (до «отказа») – один из методов увеличения силовых способностей спортсменов (Ю.Ф. Курамшин, 2004). Используя гистологические методы В.Ф. Кондаленко (1976) обнаружил серьезные повреждения миофибрилл после однократной физической нагрузки, выполненной до «отказа». Если однократная нагрузка проводилась до глубокого утомления, то деструктивные изменения в миофибриллах сохранялись и через 96 часов после ее окончания. Физиологическое исследование (Е.Б. Мякинченко, В.Н. Селуянов, 2005) работы мышц до «отказа» при выполнении медленных приседаний со штангой 50-60% от максимума показало, что амплитуда суммарной ЭМГ на протяжении всего подхода была ниже максимальной. В момент «отказного» повторения она увеличивалась. Факты серьезного повреждения мышечных волокон подтверждаются данными А.Д. Минигалина с соавт. (2011), которые изучали срочные и отставленные биохимические и физиологические эффекты прямой мышцы бедра и организма в целом после однократной физической нагрузки на силовом тренажере методом до «отказа». Ими установлена значительная активность фермента креатинкиназы через трое суток после выполнения тренировочного задания. Авторы находят, что такая динамика активности фермента свидетельствует о значительной его утечке из мышечных волокон, что говорит об их повреждениях. Кроме того, все исследуемые испытывали сильные болезненные ощущения в мышцах, максимум которых приходился на 2-3 сутки после физической нагрузки. Нами было проведено исследование ряда биомеханических и физиологических показателей четырехглавой мышцы бедра и ее головки (латеральной широкой мышцы бедра) при выполнении силовых упражнений методом до «отказа», в котором участвовали спортсмены различной квалификации (Самсонова А.В., 2010, 2011; Самсонова А.В., Косьмина Е.А., 2011). Полученные результаты позволили сделать следующие выводы:

Следует отметить, что долговременные адаптационные сдвиги в организме при использовании метода до «отказа» зависят от значений внешней нагрузки и квалификации исследуемых. Предлагаемая нами концепция воздействия физической нагрузки методом до «отказа» с внешним отягощением 70-80% от максимума состоит в следующем. Рассмотрим для примера выполнение силового упражнения «жим штанги ногами лежа на тренажере» с отягощением, составляющим 80% от максимума. Физическая нагрузка состоит в выполнении 5 подходов методом «до отказа». В первом подходе на выполнение восьми повторений спортсмен затрачивает в среднем 20-30 с. К концу первого подхода в «отказном» повторении количество мышечных волокон, способных развивать необходимое усилие, резко уменьшается – из-за того, что к 30-45 с запасы креатинфосфата в мышце подходят к концу (Н.И. Волков, 2000). Поэтому ЦНС в последних циклах движения «бросает в бой» свой резерв – самые большие и сильные ДЕ, которые еще не принимали участие в работе и потому сохранили достаточное количество этого энергетического вещества. Этим можно объяснить увеличение амплитуды ЭМГ в «отказном» повторении первого подхода. Однако падение уровня силы, которую способна развить мышца при «отказном» повторении первого подхода из-за истощения энергетических ресурсов мышечных волокон очень большое. Поэтому мышца уже не способна развить требуемый импульс силы (произведение силы мышцы на длительность ее активности), чтобы сообщить внешнему отягощению необходимую скорость после его остановки в нижнем положении. В связи с этим, выполнение упражнения в первом подходе прекращается. Через несколько минут отдыха в части истощенных мышечных волокон запасы креатинфосфата частично восстанавливаются и мышца снова может развить достаточное усилие. Поэтому спортсмен способен выполнить следующий подход до «отказа». Но так как часть мышечных волокон уже истощена или повреждена, количество повторений в подходе «до отказа» уменьшается. Если спортсмен выполняет не более пяти подходов методом до «отказа», повреждение мышечных волокон невелико, о чем свидетельствует восстановление уровня максимальной изометрической силы через 24 часа после нагрузки. Если спортсмен выполняет шесть и более подходов, уровень силы, развиваемый мышцей, резко падает, развитие необходимого импульса силы происходит за счет значительного увеличения длительности «отказного» подхода. При этом скорость сокращения мышцы в концентрическом режиме резко уменьшается, и мышца начинает функционировать практически в изометрическом режиме, который, по сравнению с концентрическим, обладает большим повреждающим воздействием на мышечные волокна. Поэтому при медленном выполнении последнего, «отказного» повторения в последнем подходе происходит значительное повреждение большого количества мышечных волокон. К концу последнего подхода в «отказном» повторении оставшиеся активными ДЕ уже не способны развить необходимый импульс силы, чтобы сообщить внешнему отягощению (80% от максимума) необходимую скорость. Спортсмен прекращает выполнение упражнения. Если работа до отказа выполняется с небольшим внешним отягощением, например, 40% от максимума, то к последнему, «отказному» повторению последнего подхода большая часть мышечных волокон отключается не из-за повреждения, а из-за истощения вследствие того, что в них исчерпались запасы энергии. Работа в таком режиме в большей степени ведет к развитию силовой выносливости, чем силы. Таким образом, изложенная концепция позволяет объяснить большинство наблюдаемых эффектов в работе до «отказа», важным моментом которой является активация и повреждение больших ДЕ, в состав которых входят МВ II типа.
Выводы и заключение
Предложен системный подход для описания влияния различных средств и методов тренировки на гипертрофию скелетных мышц человека. Показано, что основной механизм гипертрофии скелетных мышц связан с повреждением мышечных волокон и их последующей регенерацией и гипертрофией. Во время выполнения силовых упражнений не все мышечные волокна активны. Если мышечное волокно не активно, оно не повреждается. Для того, чтобы активизировать мышечные волокна II типа, которые дают максимальный прирост площади поперечного сечения мышцы при выполнении силовых упражнений необходимо использовать или большие отягощения или метод «до отказа». Также сильно мышечные волокна II типа повреждаются при выполнении силовых упражнений в эксцентрическом (уступающем режиме). Гипотеза повреждения мышечных волокон и их последующей регенерации подтверждается фактами, полученными представителями спортивной медицины о наличии болезненных ощущений в мышцах при выполнении силовых упражнений с большими отягощениями во время и после окончания тренировочного занятия (синдром DOMS).



