В настоящий период времени, для всей строительной отрасли, важной задачей является разработка новейших технологий и создание продукции, не уступающей импортным аналогам по качеству и конкурентоспособности.
Применение редиспергируемых порошков
Кроме того, все возрастает потребность отрасли в сухих строительных смесях, которые, по ценовой политике были бы доступнее, чем импортные. Всем давно понятно, что приготовить раствор непосредственно на площадке – занятие очень трудоемкое, а точно дозировать компоненты практически невыполнимая задача.
Именно поэтому, сухие строительные смеси и приобрели такую популярность, прочно завоевав доверие покупателей. Их привезут прямо на площадку, в упаковках нужного клиенту веса, со всеми добавками в составе.
Основными компонентами всех сухих смесей являются: гипс, добавки, повышающие эластичность смеси, добавки против низких температур (противоморозные), добавки, удерживающие воду, заполнители.
Классификация сухих строительных смесей достаточно обширна, она включает в себя смеси для штукатурки, для выравнивания, клеевых и другие виды. Но нужно учитывать, также и то, что смеси, имеющие сходные свойства могут применяться для разных видов производимых работ.
Далее, перейдем к рассмотрению непосредственно редиспергируемых порошков и полимеров.
Характеристики редиспергированных порошков
Он является по своему составу сухим порошком, который получен в результате сушки эмульсии из латекса. Подобные добавки используются обычно в сухих строительных смесях, для того, чтобы повысить растворам, сделанным на основе этих смесей прочность и улучшить их гидрофобные свойства. Кроме того, они придают строительным смесям гибкость, термостойкость, влагостойкость, повышают их прочность, обеспечивают определенные удобства при проведении работ, гарантируют получение качественного конечного результата.
На рынке России достаточно широкий выбор подобных добавок, но они в основном импортного производства.
Технические характеристики редиспергирующего порошка
Внешне представляют собой сыпучее вещество белого цвета. Хранятся обычно в сухих помещениях, где температура воздуха чуть ниже 25 градусов по Цельсию. Срок хранения составляет около полугода.
Если данный материал будет храниться во вскрытой таре, то имеет свойство слипаться.
Данные порошки не обладают токсичностью, соответствуют всем требованиям безопасности для человека и окружающей среды.
Для того чтобы, получить требуемый конечный продукт, порошки можно смешивать с различными добавками в любых типах смесителей. Слишком интенсивный процесс перемешивания может привести к захвату воздуха.
Перед непосредственным применением смесь должна отстояться в течение 5-6 минут.
Обычно, полимерные порошки, входящие в состав как простых, так и сложных рецептур, стоят около 97% от всех затрат на приобретаемое сырье. Но в тоже время, без них произвести высококачественный строительный материал просто невозможно.
Как уже говорилось, основная масса используемых РПП закупается за границей, что значительно увеличивает стоимость строительных материалов, созданных на их основе. В России есть разработки таких добавок, но массовый их выпуск не отлажен. В основной своей массе они находятся в жидком состоянии, поэтому при использовании их с водой технология серьезно усложняется.
Редиспергируемый полимерный порошок
Редиспергируемый полимер – продукт достаточно специфический, потому, что с одной стороны он должен хорошо впитывать воду, а с другой стороны, обладать высокой устойчивостью к смыванию водой.
Характеристики редиспергируемых полимерных порошков
Характеристики данного полимера зависят от того, с какой целью он был разработан. Технологии сейчас позволяют разрабатывать полимеры с антибактериальными добавками, которые будут применять в строительстве.
РПП также часто используется сейчас при производстве клея для плитки, также они значительно могут сократить время высыхания цементных смесей.
Полимерные синтетические порошки
Полимерные синтетические порошки используются сейчас довольно широко. Благодаря наличию их в составе красок, клея, различных смесей, обеспечивается хорошая эластичность при нанесении, стойкость к износу (истиранию), высокая прочность.
В целом все эти порошки можно разделить на две группы:
Основа любого редиспергируемого порошка – это акриловые полимеры, бутадиен-стирольные и так далее.
Страны-производители редиспергируемых порошков
Франция
Одним из признанных лидеров в этой сфере производства является Франция. Они производят именно, так называемые латексные порошки, которые получают путем сушки полимерных эмульсий вместе со стабилизатором, который растворим в воде. При последующем высыхании порошок будет иметь размер своих гранул, составляющий буквально несколько микрон. При взаимодействии с водой, он активизируется и постепенно приведет эмульсию в ее изначальное состояние.
Германия
РПП этих стран-производителей, не содержат в своем составе пластификаторов, отлично удерживают влагу, устойчивы и технологичны.
В связи с тем, что производство в этих странах ведется уже давно, оно уже отлажено и не дает никаких сбоев.
Проблемы производства в Российской Федерации
При анализе всего вышесказанного, напрашивается вывод, что импортные производители значительно обогнали нас по производству и внедрению такой химической продукции, ушли далеко вперед.
В отличие от стран Запада подобные технологии в нашей стране считаются инновационным направлением, которое только осваивается.
Большинство РПП российского производства имеют серьезные недостатки, о части которых уже упоминалось выше:
Кроме этого, ситуация значительно усложняется тем, что российские стандарты, для добавок подобного типа, отличаются от европейских.
То есть, потребителю приходится, либо приобретать отечественные редиспергируемые порошки и полимеры, которые не отличаются высоким качеством, либо в разы переплачивать импортным производителям.
Вообще, в России на сегодняшний день производится множество полимеров для самых разных отраслей:
но только не для сухих строительных смесей.
Некоторые из этих РПП представляют серьезный интерес и их можно использовать в строительстве.
Стоит уточнить, что исследования в этом направлении ведутся и не стоят на месте. Имеется порошковый полимер, которой можно использовать в сухих смесях, а постепенно наладить выпуск и со временем заменить на этом рынке дорогие импортные аналоги.
Основные проблемы при производстве РПП составляет, конечно, почти полное отсутствие опыта подобного производства, не хватает необходимых специалистов, далеко не везде оборудование позволяет вести такую работу.
Ситуация, конечно, меняется в лучшую сторону, в российских разработках заинтересованы на самом высоком уровне, в отрасль вкладываются серьезные средства, что позволяет вести исследования и создавать принципиально новую продукцию для рынка полимеров.
материалы по теме
Эпоксидные порошковые краски
Эпоксидные лакокрасочные материалы за время своего развития получили хорошую репутацию и на сегодняшний день имеют большую популярность как среди специалистов, так и среди простых людей, не каждый день сталкивающихся с ремонтными или строительными работами. Эпоксидными красками называются те краски, основным компонентом состава которых является эпоксидная смола.
Новые матовые порошковые краски на основе акриловых смол и нанодобавок
Проект научно-исследовательской работы ученых из Великобритании и Греции предусматривает разработку нового передового сырья на полимерной основе и композитных материалов, а также технологии обработки и изготовления новых порошковых красок.
Порошковые материалы
Порошковые краски, по мнению европейских специалистов, это один их самых важных путей лакокрасочной промышленности. Он направлен на решение экологических проблем и сбережения ресурсов. Порошковая краска производится при помощи технологии, которая не имеет отходов, является экологически чистой. При этом порошковые покрытия обладают высочайшим уровнем защиты и декоративных свойств. Кроме того, порошковые краски не только выгодней экологически, но и экономически и технически.
Редиспергируемые порошки (РПП) представляют собой сухие полимерные порошки, полученные методом распылительной сушки латексной эмульсии (дисперсии полимерных частиц в воде). При затворении водой РПП вновь образуют водные полимерные дисперсии. Для предотвращения слипания латексных частиц в процессе производства и при разбавлении водой используют защитный коллоид, поливиниловый спирт. РПП (сухие латексы) обычно производят на основе:
Добавки РПП используют главным образом в сухих строительных смесях (ССС), они придают растворам на основе этих ССС следующие свойства
Компания Интердисп предлагает Вам ассортимент редиспергируемых полимерных порошков серии Neolith итальянской компании FAR Polymers,
Компания FAR более 25 лет производит РПП на собственных мощностях и имеет богатый технический опыт и высокую культуру производства,
В производственных активах 2 линии распылительной сушки с независимым технологическим процессом,
В портфеле продуктов 16 различных марок РПП для широкого спектра сухих смесей,
Компания FAR первой в мире освоила технологию производства РПП на основе винил-акрилатов
Отдел добавок для сухих строительных смесей компании Интердисп Рус предлагает широкий спектр химических компонентов для производства сухих строительных смесей: клеев, штаплевок и штукатурок, наливных полов, систем теплоизоляции, мембран, ремонтных и тампонажных смесей, кладочных растворов. Мы осуществляем техническую поддержку клиентов, предоставляем техническую документацию, образцы для лабораторных тестов, бесплатные консультации при разработке и изменении и оптимизации рецептур. Нашими постоянными партнерами является многочисленные производители ССС по всей территории России, от крупнейших международных компаний до небольших региональных производств.
Редиспергируемые полимерные порошки получают путем распылительной сушки полимерных дисперсионных систем, главным образом, на основе винилацетатных сополимеров. После перемешивания с водой эти порошки снова переходят в дисперсионную систему (редиспергируются) со всеми присущими характеристиками и функциями полимерных вяжущих веществ.
Модификация сухих строительных растворных смесей с помощью таких порошков повышает, в зависимости от дозирования, прочность адгезионной связи на основаниях всех видов, трещиностойкость, прочность при изгибе и сопротивление истиранию, ударную вязкость, связность и непроницаемость, а также водоудерживающую способность строительных растворов. Улучшается удобоукладываемость. Специальные редисперсионные порошки, придают растворам водонепроницаемые или водоотталкивающие свойства.
ГК ЕТС предлагает редиспергируемые полимерные порошки (РПП) для сухих строительных смесей (ССС).
Редиспергируемый полимерный порошок Dairen DA-1400 представляет собой cополимер винил ацетата с этиленом, который легко диспергируется в воде и образует стабильную эмульсию. Мягкий и эластичный из-за относительно высокого содержания этилена. Температура стеклования ниже точки замерзания. Этот редиспергируемый порошок особенно рекомендуется для смешивания с неорганическими связующими, такими как цемент и гидратная известь, или в качестве единственного связующего для производства строительных клеев.
Упаковка: мешок 25 кг
Упаковка: мешок 20 кг / 25 кг
Редиспергируемый полимерный порошок Dairen DA-6200 представляет собой сополимер винил ацетата с этиленом, содержащий поливиниловый спирт в качестве защитного коллоида. DA-6200 содержит тонкий минеральный наполнитель в качестве антиблокирующего агента. Не содержит растворителей, пластификаторов и пленкообразующих веществ. Dairen DA-6200 рекомендуется для смешивания с неорганическими связующими веществами, такими как цемент, гашеная известь, для модификации системы гидратации раствора.
Упаковка: мешок 25 кг
Редиспергируемый полимерный порошок Axilat HP 8513 представляет собой сополимер винилацетата и винилсульфата в редиспергируемой порошковой форме.
Упаковка: мешок 25 кг
Редиспергируемый полимерный порошок AXILAT HP 8538 представляет собой редиспергируемый в воде порошок, используемый в сухих строительных растворах для улучшения адгезии к обычным основаниям, особенно к пенополистирольным плитам, гидрофобные свойства, механические свойства, обрабатываемость свежего раствора.
Упаковка: мешок 25 кг
Редиспергируемый полимерный порошок Axilat PSB 150 представляет собой порошковую смолу на основе сополимера стирола и бутадиена, которая диспергируется в воде. Axilat PSB 150 повторно диспергируется до размера частиц, который составляет одну десятую от обычных латексных порошков, что приводит к очень высокой мощности связующего и улучшенной адгезии для конечных рецептур. Рекомендуется для применения в составах на основе гипса.
Упаковка: мешок 25 кг
Редиспергируемый полимерный порошок Dairen DA-1200 представляет собой сополимер винил ацетата с этиленом, который легко диспергируется в воде и образует стабильную эмульсию. Этот редиспергируемый порошок особенно рекомендуется для смешивания с неорганическими связующими, такими как цемент, гипс и гидратная известь, или в качестве единственного связующего вещества для изготовления строительных клеев.
Упаковка: мешок 25 кг
Редиспергируемый полимерный порошок Dairen DA-3510 представляет собой сополимер винил ацетата с этиленом, который легко диспергируется в воде и образует стабильную эмульсию. Мягкий и эластичный из-за относительно высокого содержания этилена. Температура стеклования ниже точки замерзания. Этот редиспергируемый порошок особенно рекомендуется для смешивания с неорганическими связующими, такими как цемент, гипс и гашеная известь, или в качестве единственного связующего для изготовления строительных клеев и уплотнений.
Способ получения редиспергируемых в воде полимерных порошков
Владельцы патента RU 2618253:
Область техники, к которой относится изобретение
Известны традиционные способы синтеза редиспергируемых полимерных связующих (порошков) с использованием органического растворителя или воды с последующим их высушиванием и измельчением, что сопровождается большим количеством отходов.
В частности, из RU 2411266, DE 102006007282, RU 2417234, RU 2339592, RU 98118234, RU 2368583, RU 2456252, RU 2288240, RU 2371450 известны способы получения редиспергируемых полимеров, которые сводятся к полимеризации мономеров в воде или органических растворителях. Затем полимеры выделяют из водных или органических дисперсий. Из RU 2371450 известны различные способы выделения редиспергируемого полимера из дисперсий, такие, например, как сушка в псевдоожиженном слое, сушка в тонком слое (сушка в валковой сушилке), сублимационная сушка, сушка вымораживанием полимера или распылительная сушка. Известен также способ получения редиспергируемого полимерного порошка осаждением из дисперсии с дальнейшим высушиванием и измельчением [RU 2210576].
Недостатком данного способа синтеза является необходимость получения редиспергируемого полимера по двухстадийной технологии, что усложняет и увеличивает во времени процесс синтеза в связи с необходимостью по завершении первой стадии (формирования гидрофобного ядра полимера) остановки синтеза с переводом CO2 из сверхкритического в газообразное состояние и дальнейшем его удалением из зоны реакции с целью введения в автоклав на второй стадии второй порции мономеров для синтеза гидрофильной оболочки, и повторное введение в реакционный сосуд СО2 с переводом его в сверхкритическое состояние для дальнейшей полимеризации. Кроме того, в известном способе отсутствует возможность проведения процесса синтеза с использованием мономеров в газовой фазе. Известно, что такие мономеры, как этилен, являются крайне важными исходными веществами для синтеза редиспергируемых сополимеров с требуемыми высокими физико-механическими свойствами, при этом известный аналог не предусматривает возможности введения этилена в газовом состоянии в процессе синтеза полимерного редиспергируемого порошка. Кроме того, наличие таких гидрофобных соединений как олигофторуглеродные и олигосилоксановые ПАВ в составе ухудшает редиспергируемость конечного продукта. Кроме того, растворимая гидрофильная оболочка, обуславливающая редиспергируемость в воде конечного полимера, при формировании из последнего покрытия приводит к его частичной смываемости и, таким образом, обуславливает его дефектность в процессе эксплуатации. А наличие гидрофобного ядра не позволяет этой части редиспергируемого полимера набухать в воде, что является непременным условием получения покрытия с высокими эксплуатационными свойствами. Гидрофобное ядро не позволяет использовать данный полимер не только как связующее, но и как дополнительную водоудерживающую добавку, что крайне актуально при получении тонких покрытий на основе редиспергируемых красок в связи с тем, что вода крайне быстро испаряется из тонкого слоя покрытия и не позволяет полностью кристаллизоваться цементу, на основе которого делаются такие краски. Введение же для этих целей большого количества водоудерживающей добавки, роль которой выполняют водорастворимые полимеры, может привести к получению смываемого покрытия. Таким образом, предпочтительно выполнение роли водоудерживающей добавки ре диспергируемым мономером. Еще одним недостатком данного способа синтеза является крайне ограниченный состав исходных мономеров, что в значительной мере ограничивает в достижении заданных характеристик конечного продукта, поскольку основной задачей применения редиспергируемого полимера является не только получение стабильной водной дисперсии, но и достижение необходимых характеристик покрытия и/или эксплуатационных свойств модифицированных им неорганических вяжущих и сухих строительных смесей.
Задачей изобретения является разработка способа получения редиспергируемых в воде полимерных порошков с однородной структурой полимерных частиц при упрощении технологии.
В заявляемом технологическом процессе по сравнению с традиционной методикой (полимеризация в воде или в органическом растворителе) отсутствует стадия осушения редиспергируемого полимера («принудительное» удаление из зоны реакции воды или органического растворителя), измельчения, очистки сточных вод и органических растворителей, при этом использование в заявляемой технологии диоксида углерода носит циклический характер. Таким образом, заявляемый способ позволяет получать полимерные порошки без остатков органического растворителя, качество которых соответствует порошкам, полученным традиционным способом синтеза.
Переход диоксида углерода в сверхкритическое состояние для проведения синтеза редиспергируемых полимеров может быть обеспечен процессом, при котором осуществляют его нагнетание в реакторе до давления 80-500 атм и нагрев до температуры 60-100°С. В качестве реактора рекомендуется использовать автоклав для проведения синтеза при давлении свыше 70 атм.
В одном из вариантов осуществления изобретения дополнительно в реактор может быть загружен усиливающий полимер, в качестве которого используют бутанолизированный дифенилолпропанформальдегидный олигомер (БДФО) с молекулярной массой Mn=500-850, содержанием метилольных групп 10-20%, бутоксильных групп 10-25%, который может быть синтезирован по методике, представленной в материалах патентов RU 2264416 или RU 2318835, вводимый в количестве до 30% от массы редиспергируемого полимерного порошка, при этом после получения редиспергируемого полимерного порошка в него добавляют уротропин в качестве сшивающего агента в количестве от 2 до 5% от количества используемого бутанолизрованного дифенилолпропанформальдегидного олигомера (БДФО).
В качестве примеров использования мономеров, имеющих сродство к воде, могут служить карбоновые кислоты, и/или нитрилы карбоновых кислот, и/или амиды.
В качестве примеров использования мономеров, не имеющих сродства к воде, могут служить эфиры карбоновых кислот, и/или олефины и диены, и/или глицидилакрилаты, и/или винилароматические соединения, и/или винилгалогениды.
Пригодными для применения в качестве эфиров карбоновых кислот являются сложные виниловые эфиры карбоновых кислот с 1-15 атомами углерода, и/или эфиры акриловой и метакриловой кислот с разветвленными или неразветвленными спиртами с 1-15 атомами углерода. В качестве сложных виниловых эфиров карбоновых кислот с 1-15 атомами углерода могут быть использованы винилацетат, и/или виниллаурат, и/или винилпивалат, и/или виниловые эфиры α-разветвленных монокарбоновых кислот с 9-13 атомами углерода, например, продукты VeoVa9®, VeoVa10®, или VeoVa11® (торговое наименование продуктов фирмы Resolution Europe BV, Hoogvliet, Нидерланды). Наиболее предпочтителен среди них винилацетат. В качестве эфиров акриловой и метакриловой кислот с разветвленными или неразветвленными спиртами с 1-15 атомами углерода могут быть использованы метилакрилат, и/или метилметакрилат, и/или этилакрилат, этилметакрилат, и/или пропилакрилат, и/или н-бутилакрилат, и/или бутилметакрилат, и/или норборнилакрилат. В качестве олефинов и диенов могут быть использованы этилен, и/или пропилен, и/или 1,3-бутадиен, и/или децен. В качестве глицидилакрилатов могут быть использованы глицидилакрилат и/или глицидилметакрилат, при этом в полученный полимерный порошок дополнительно вводят амины в качестве сшивающего агента в количестве 2-5% от массы загружаемого глицидилакрилата. В качестве винилароматических соединений используют стирол и/или дивинил бензол. В качестве винилгалогенидов используют винилхлорид и/или винилфторид.
Регулирование свойствами конечного продукта можно осуществлять посредством использования функциональных добавок, в качестве которых могут быть использованы защитный коллоид, и/или цветовые и/или светящиеся добавки, и/или ингибитор коррозии, и/или антикоррозионный агент, и/или биоцидную добавку, и/или диспергатор, которые загружают в реактор вместе с мономерами, или добавляют в полученный после полимеризации полимерный порошок.
В частности, для дальнейшей стабилизации водной дисперсии на основе синтезируемых редиспергируемых полимеров в реакционную систему вместе с мономерами загружают защитные коллоиды, в качестве которых могут быть использованы частично омыленный поливиниловый спирт со степенью гидролиза от 80 до 98 мол. %, и/или целлюлоза, и/или их карбоксиметильные, метальные, гидроксиэтильные и гидроксипропильные производные, и/или крахмал, при этом защитный коллоид используют в количестве до 50% от массы загружаемых мономеров. Оптимальным является применение в качестве защитного коллоида модифицированного ацетоуксусными группами поливинилового спирта со степенью омыления 92-95% и средней степенью полимеризации 350-450.
Состав исходных компонентов может также содержать и иные функциональные добавки, например, цветовые и/или светящиеся добавки, в качестве которых используют пигменты (например, неорганический пигмент железная лазурь, органический пигмент марки «пигмент алый», полученный на основе диазотированного 3-нитро-4-аминотолуола и β-нафтола), и/или флуоресцентные пигменты (например, марок VQ, в частности VQ-D-24, представляющие собой органический краситель на основе этиламина, метоксикарбонила и диметилхлорида в аминосмоле), и/или водостойкие люминофоры (например, BG 300М, химический состав которого Sr4Al14O25: Eu,Dy, а также GSS-SA, GSS-LA, химический состав которых базируется на ZnS, и др), которые вводят в количестве до 10% от массы загружаемых мономеров.
В качестве ингибитора коррозии могут быть использованы цинксодержащая комплексная соль, например, марки SER-AD-FA-179 (фирма Servo, Германия); и/или нитрит натрия, и/или бензоат натрия, при этом ингибитор коррозии вводят в количестве до 2% от массы загружаемых мономеров.
Примерами использования антикоррозионного агента являются оксиаминофосфатный комплекс кальция и магния, например, марки «Pigmentan ЕА» фирмы «Pigmentan Ltd» (Израиль), при этом антикоррозионный агент вводят в количестве до 5% от массы загружаемых мономеров.
В качестве биоцидной добавки могут быть использованы составы марки Метатин К 520 ф. Acima, Швейцария (на основе изотиазолина и галогенизированных производных алканола); и/или марки Тиурам Д (ГОСТ 740-76) (на основе тетраме-тилтиурамдисульфида); и/или марки Скейн 8 (ф. Rohm and Haas) (на основе 2-н-октил-4 изотиазолина), при этом биоцидную добавку вводят в количестве до 5% от массы загружаемых мономеров.
В качестве диспергатора используют составы марки ОП-7 и/или ОП-10, представляющие собой продукты обработки смеси моно- и диалкилфенолов окисью этилена, при этом диспергатор вводят в количестве до 5% от массы мономеров.
В полученный полимерный порошок добавляют антислеживающий агент, в качестве которого используют карбонат кальция-магния (доломит), и/или тальк, и/или каолин, и/или силикаты, например, гидросиликат магния с дисперсностью от 10 нм до 10 мкм, при этом антислеживающий агент вводят в количестве до 30% от массы загружаемых мономеров.
Перечисленный выше компонентный состав реакционной массы не ограничивает настоящее изобретение, а лишь показывает возможные варианты осуществления изобретения с достижением у получаемого полимера заявленных свойств.
Краткое описание чертежей
Заявляемое изобретение может быть реализовано следующим образом.
В качестве исходных мономеров (гидрофильных и гидрофобных), инициатора полимеризации, восстановителей инициатора, регулятора роста цепи, и функциональных добавок предлагается использовать соединения, представленные в Таблице 1.
В процессе создания заявляемой технологии также было учтено, что полимер должен обладать редиспергируемостью, а не растворимостью в воде. Для обеспечения указанных свойств и достижения редиспергируемости конечного продукта соотношение мономеров должно быть подобрано таким образом, чтобы средняя расчетная ЭМГ была в 1,3÷1,5 раза больше теоретической ЭМГ полимера, обуславливающей сродство к воде. Ниже представлен пример, по аналогии с которым может быть реализован подбор мономеров с предварительной оценкой редиспергируемости получаемого на их основе полимерного порошка.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что использовали 1,72 г бутилакрилата, 1,72 г виниллаурата и 8,74 г винилацетата.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что вместо виниллаурата использовали винилпивалат. Дополнительно вводили 0,17 г н-додецилмеркаптана.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что вместо бутилакрилата использовали метилметакрилат. Дополнительно в автоклав перед началом полимеризации загружали 2 г крахмала (Avedex 36 LAC14) и 0,17 г меркаптопропионовой кислоты. Затем в автоклав подавали диоксид углерода до установления давления 80 атм. Включали мешалку и при указанной температуре проводили полимеризацию.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что вместо бутилакрилата использовали этилметакрилат. Дополнительно вводили 0,17 г меркаптопропионовой кислоты и 0,17 г аскорбиновой кислоты. Диоксид углерода подавали в автоклав до установления давления 440 атм.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что вместо бутилакрилата использовали пропилакрилат. Дополнительно в автоклав перед началом полимеризации загружали 1 г гидроксиэтилцеллюлозы (Tylose Н20). В автоклав подавали диоксид углерода до установления давления 500 атм и поднимали температуру до 60°С. Включали мешалку и при указанной температуре проводили полимеризацию.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что вместо бутилакрилата использовали бутилметакрилат.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что вместо бутилакрилата использовали норборнилакрилат. Дополнительно вводили 0,17 г трет-додецилмеркаптана. В автоклав подавали диоксид углерода до установления давления 300 атм и поднимали температуру до 100°С. Включали мешалку и при указанной температуре проводили полимеризацию.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что перед началом полимеризации под давлением 30 бар в автоклав подавали этилен (его расчетное количество в автоклаве составляло 0,88 г), а винилацетат использовали в количестве 10,5 г. Затем, после прекращения подачи этилена в автоклав подавали диоксид углерода до установления давления 400 атм и поднимали температуру до 65°С. Включали мешалку и при указанной температуре проводили полимеризацию.
Редиспергируемый порошок получали аналогично примеру 12 с тем лишь отличием, что вместо этилена использовали пропилен.
Редиспергируемый порошок получали аналогично примеру 12 с тем лишь отличием, что вместо этилена использовали 1,3-бутадиен.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что дополнительно в автоклав загружали еще 0,88 г децена, винилацетата использовали в количестве 10,5 г.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что не использовали бутилакрилат.
В автоклав загружали 9,2 г винилацетата и 0,05 г 2,2′-азоизобутиронитрила, затем под давлением 30 бар в автоклав подавали этилен (его расчетное количество в автоклаве составляло 0,8 г). Затем, после прекращения подачи этилена в автоклав подавали диоксид углерода до установления давления 400 атм и поднимали температуру до 65°С.
В автоклав загружали 0,05 г 2,2′-азоизобутиронитрила и подавали этилен и винилхлорид до их соотношения этилен: винилхлорид 2 г: 8 г, соответственно. Затем в автоклав подавали диоксид углерода до установления давления 400 атм и поднимали температуру до 65°С. Включали мешалку и при указанной температуре проводили полимеризацию.
В автоклав загружали 9,2 г винилацетата и 0,05 г 2,2′-азоизобутиронитрила, затем в автоклав подавали этилен и винилхлорид (их расчетное количество в автоклаве составляло 0,15 г и 0,65 г, соответственно). Затем в автоклав подавали диоксид углерода до установления давления 400 атм и поднимали температуру до 65°С. Включали мешалку и при указанной температуре проводили полимеризацию.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что в реактор винилацетат не загружали, бутилакрилат загружали в количестве 5,27 г и в реактор дополнительно загружали 3,2 г N-винилформамида.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что в реактор винилацетат не загружали, бутилакрилат загружали в количестве 4,37 г и в реактор дополнительно загружали 2,7 г N-винилпирролидона.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что в реактор винилацетат не загружали, бутилакрилат загружали в количестве 5,00 г и в реактор дополнительно загружали 3,1 г N,N-диметилакриламида.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что в реактор винилацетат не загружали, бутилакрилат загружали в количестве 2,25 г, акрилонитрила загружали 1 г и в реактор дополнительно загружали 0,88 г глицидилметакрилата.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что в реактор дополнительно загружали 1,55 г глицидилакрилата и 0,88 г метакрилонитрила.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что в реактор дополнительно загружали 7 г дифенилолпропанформальдегидного олигомера с молекулярной массой Mn=650, содержанием метилольных групп 10%, бутоксильных групп 20%, синтезированый по методике, представленной в материалах патента RU 2318835, выделенный из растворителя в вакуумном шкафу и измельченный до порошкового состояния.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что вместо VeoVa10® использовали VeoVa11®, бутилакрилата загружали 1,24 г. Дополнительно вводили акриловую кислоту в количестве 1,77 г и 0,09 г «Zimplex 15», а 2,2′-азоизобутиронитрил использовали в количестве 0,02 г. Синтез вели при температуре 100°С.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что винилацетата загружали в количестве 11,38 г, VeoVa10® использовали в количестве 1,95 г, а акрилонитрил вводили в количестве 2,32 г.
Редиспергируемый порошок получали аналогично примеру 12 с тем лишь отличием, что акрилонитрил не вводили, a VeoVa10® вводили в количестве 4,74 г. Дополнительно вводили метакриловую кислоту в количестве 0,53 г и «Zimplex 15» в количестве 0,01 г. Температуру поднимали до 100°С.
Редиспергируемый порошок получали аналогично примеру 1 с тем лишь отличием, что винилацетата загружали в количестве 9,45 г, акрилонитрил вводили в количестве 0,35 г. Дополнительно вводили метакриловую кислоту в количестве 1,58 г и «Zimplex 15» в количестве 0,05 г. Температуру поднимали до 80°С.
В реактор загружали воду, мономеры и инициатор, перечисленные в Примере 1 до получения 30%-ной водной дисперсии. Включали мешалку и поднимали температуру до 65°С. При указанной температуре проводили полимеризацию. По достижении необходимой молекулярной массы обогрев реактора отключали. Полимер отфильтровывали и затем осушали при помощи метода горячей распылительной сушки.
Температуры стеклования всех редиспергируемых полимеров, полученных по примерам 1-31, лежали в диапазоне 0-+40°С.
Все полученные полимеры были проверены на редиспергируемость, которую определяли по следующей методике: водные дисперсии полимерного порошка с его содержанием, равным 30 мас. %, приготавливали путем его повторного диспергирования в воде при воздействии высоких сдвиговых усилий. Далее определяли редиспергируемость разбавленных повторно приготовленных дисперсий, для чего 100 мл такой дисперсии помещали в градуированную трубку и определяли высоту отстоявшегося слоя твердого вещества. Высоту отстоявшегося слоя твердого вещества в миллиметрах измеряли через 24 часа отстаивания дисперсии. Значения, превышающие 7 мм, свидетельствуют о неудовлетворительной редиспергируемости порошка.
Редиспергируемость всех дисперсий, полученных из полимерных порошков по примерам 1-27 через 24 часа имели высоту отстоявшегося слоя твердого вещества менее 7 мм, что свидетельствует об их хорошей редиспергируемости.
Таким образом, является доказанным, что синтез редиспергируемого полимера полимеризационного типа в условиях сверхкритического диоксида углерода является альтернативой традиционного способа синтеза в водной или органической среде и позволяет получать редиспергируемые полимеры с требуемым набором характеристик.
Одной из важных эксплуатационных характеристик редиспергируемых полимеров является значение вязкости их дисперсий. Как известно, высокая вязкость дисперсий препятствует их успешному применению в качестве лакокрасочных материалов.
Для оценки динамической вязкости растворов полимеров при разных значениях его концентрации нами использовался вибровискозиметр A&D SV-10 синусоидальный (Япония). Рабочая температура 25°С. Результаты исследования зависимости динамической вязкости различных дисперсий полимеров приведены на фиг. 3.
Таким образом, редиспергируемые полимеры, синтезированные по заявляемому способу позволяют получать дисперсии с концентрацией не менее 15%, что предполагает их успешное использование в качестве лакокрасочных материалов.
После получения на основе редиспергируемого полимера водной дисперсии был исследован размер образовавшихся частиц дисперсии и влияние на него количества ограничителя роста цепи, введенного при синтезе полимера. Размер частиц водной дисперсии исследовался методом динамического светорассеяния. Результат испытания представлен на фиг. 4. Из приведенной зависимости видно, что увеличение количества ограничителя роста цепи, вводимого при синтезе редиспергируемого полимера, приводит к уменьшению величины макромолекул, что косвенно характеризуется размером частиц полученной на основе редиспергируемого полимера водной дисперсии.
Также важным технологическим показателем дисперсии полимеров, применяемых в лакокрасочной отрасли является смачиваемость дисперсией подложки. Хорошая смачиваемость подложки обуславливает легкость растекания дисперсии по поверхности и образование качественного бездефектного покрытия. Смачиваемость характеризуется углом смачивания. Методика определения угла смачивания сводится к следующему: на поверхность микрошприцем наносится капля полимерной дисперсии объемом 1-10 мм 3 и с помощью горизонтального оптического микроскопа с гониометрической приставкой определялся равновесный краевой угол смачивания Θ. Абсолютная ошибка при определении краевого угла смачивания не более 0,5°. Результаты измерений приведены в таблице 4. Из приведенных в таблице 4 данных видно, что краевой угол смачивания водных дисперсий, полученных по предлагаемому способу имеет меньшую величину, нежели у водной дисперсии, полученной по прототипу, что свидетельствует о лучшей смачиваемости и растекаемости предложенных полимерных дисперсий по сравнению с прототипом. Данный показатель особенно важен при получении на основе синтезированных полимеров тонких полимерных покрытий (в том числе и на основе редиспергируемых красок).
Пример 28. Получение редиспергируемого лакокрасочного материала на основе полимерного порошка.
В шаровую мельницу загружали перечисленные ниже компоненты (в масс. ч.) и перетирали их до степени дисперсности 65 мкм:
портландцемент
100
силикат калия
10,0
CaCl2
5,0
редиспергируемый полимер
8,0
TiO2
15,0
полифосфат натрия
0,1
цеолит
5,0
слюда
3,0
стеарат кальция
2,0
пеногаситель BYK 024
0,05
этилцеллюлоза
1,0
гидроксиэтилцеллюлоза
1,0
этиленгликоль
1,0
Образовавшийся после размалывания в шаровой мельнице порошок и являлся требуемой формой редиспергируемой в воде краски.
Получение готового к употреблению лакокрасочного материала осуществлялось путем добавления к порошку воды в соотношении порошок: вода 1:1,1 (по массе) и тщательного перемешивания сначала в течение не менее 60 с, а затем после пятнадцатиминутного перерыва еще в течение 5 минут.
Материал наносили (кистью, валиком, краскораспылителем) на металлические, стеклянные, деревянные, бетонные и отштукатуренные подложки. После отверждения полученные покрытия оценивали по внешнему виду, адгезии, смываемости.
Таким образом, преимущества заявляемого способа получения полимерных порошков с использованием в качестве растворителя сверхкритического диоксида углерода очевидны: он обладает высокой растворяющей способностью и инертен по отношению к большинству мономеров; имеет высокий коэффициент диффузии (в
100 раз выше, чем у жидкости) и низкую вязкость (в
Отсутствие в процессе полимеризации сточных вод, требующих очистки, уменьшенное количество необходимой для получения полимера аппаратуры, упрощение технологического процесса, в конечном счете, приводит к значительному удешевлению получаемого продукта при сохранении его высоких эксплуатационных характеристик. При редиспергировании в воде указанные полимерные порошки образуют стабильную дисперсию. Полученные результаты испытаний свидетельствуют о том, что заявляемый способ получения редиспергируемых полимеров в сверхкритическом диоксиде углерода позволяет получать материалы, идентичные по свойствам редиспергируемым полимерам, синтезированным по традиционной технологии в водной дисперсии.
Следует отметить, что разработанный способ синтеза позволяет не только облегчить технологический процесс получения редиспергируемых полимерных порошков, но также позволяет получать редиспергируемые олигомеры с широким диапазоном заранее заданных эксплуатационных характеристик, обусловленных широкой областью применения редиспергируемых в воде олигомеров. Полученные в среде сверхкритического диоксида углерода редиспергируемые в воде полимеры возможно применять как при получении водных дисперсий с целью получения тонких защитных полимерных пленок, так и модификации неорганических вяжущих для лакокрасочной, строительной и бытовой областей применения.
Таким образом, предложенный способ синтеза редиспергируемых полимеров в среде сверхкритического диоксида углерода является крайне перспективным и экологически благоприятным.
2. Способ по п. 1, характеризующийся тем, что диоксид углерода нагнетают до давления до 80-500 атм, нагрев исходных компонентов осуществляют до температуры 60-100°С.
3. Способ по п. 1, характеризующийся тем, что для получения полимера с молекулярной массой не более 100000 инициатор в реактор загружают в количестве 0, 1-5 мас. % от массы мономеров.
4. Способ по п. 1, характеризующийся тем, что для получения полимера с молекулярной массой не более 100000 дополнительно в реактор загружают регулятор роста цепи в количестве не более 5 мас. % от массы мономеров.
5. Способ по п. 4, характеризующийся тем, что в качестве регулятора роста цепи используют н-додецилмеркаптан, и/или трет-додецилмеркаптан, и/или меркаптопропионовую кислоту, и/или метиловый эфир меркаптопропионовой кислоты.
6. Способ по п. 1, характеризующийся тем, что в качестве инициатора полимеризации используют 2,2′-азоизобутиронитрил, и/или перекись бензоила, или их комбинации с восстановителями.
7. Способ по п. 6, характеризующийся тем, что в качестве восстановителей используют гидроксиметансульфинат натрия и аскорбиновую кислоту, при этом восстановителей в реактор загружают в количестве до 5 мас. % от массы загружаемых мономеров.
8. Способ по п. 1, характеризующийся тем, что дополнительно в реактор загружают усиливающий полимер, в качестве которого используют бутанолизированный дифенилолпропанформальдегидный олигомер с молекулярной массой Mn=500-850, который вводят в количестве до 30 мас. % от массы редиспергируемого полимерного порошка, при этом после получения редиспергируемого полимерного порошка в него добавляют уротропин в качестве сшивающего агента.
9. Способ по п. 1, характеризующийся тем, что в качестве гидрофильных мономеров используют карбоновые кислоты, и/или нитрилы карбоновых кислот, и/или амиды.
10. Способ по п. 1, характеризующийся тем, что в качестве гидрофобных мономеров используют эфиры карбоновых кислот, и/или олефины и диены, и/или глицидилакрилаты, и/или винилароматические соединения, и/или винилгалогениды.
11. Способ по п. 9, характеризующийся тем, что в качестве карбоновых кислот используют акриловую и/или метакриловую кислоты.
12. Способ по п. 9, характеризующийся тем, что в качестве нитрилов карбоновых кислот используют акрилонитрил.
13. Способ по п. 9, характеризующийся тем, что в качестве амидов используют N-винилформамид, и/или N,N-диметилакриламид, и/или N-винилпирролидон, и/или диакриламид.
14. Способ по п. 9, характеризующийся тем, что при использовании карбоновых кислот дополнительно в полученный полимерный порошок вводят в качестве сшивающего агента составы на основе оксида цинка, например, марки «Zimplex 15» фирмы «Munzing Chemie GMBH» в количестве 2-5 мас. % от массы загружаемых кислот.
15. Способ по п. 10, характеризующийся тем, что в качестве эфиров карбоновых кислот используют сложные виниловые эфиры карбоновых кислот с 1-15 атомами углерода, и/или эфиры акриловой и метакриловой кислот с разветвленными или неразветвленными спиртами с 1-15 атомами углерода.
16. Способ по п. 15, характеризующийся тем, что в качестве сложных виниловых эфиров карбоновых кислот с 1-15 атомами углерода используют винилацетат, и/или виниллаурат, и/или винилпивалат, и/или виниловые эфиры α-разветвленных монокарбоновых кислот с 9-15 атомами углерода.
17. Способ по п. 15, характеризующийся тем, что в качестве эфиров акриловой и метакриловой кислот с разветвленными или неразветвленными спиртами с 1-15 атомами углерода используют метилакрилат, и/или метилметакрилат, и/или этилакрилат, этилметакрилат, и/или пропилакрилат, и/или н-бутилакрилат, и/или бутилметакрилат, и/или норборнилакрилат.
18. Способ по п. 10, характеризующийся тем, что в качестве олефинов и диенов используют этилен, и/или пропилен, и/или 1,3-бутадиен, и/или децен.
19. Способ по п. 10, характеризующийся тем, что в качестве глицидилакрилатов используют глицидилакрилат и/или глицидилметакрилат.
20. Способ по п. 10, характеризующийся тем, что при использовании глицидилакрилатов в полученный полимерный порошок дополнительно вводят амины в качестве сшивающего агента в количестве 2-5 мас. % от массы загружаемого глицидилакрилата.
21. Способ по п. 10, характеризующийся тем, что в качестве винилароматических соединений используют стирол и/или дивинилбензол.
22. Способ по п. 10, характеризующийся тем, что в качестве винилгалогенидов используют винилхлорид и/или винилфторид.
23. Способ по п. 1, характеризующийся тем, что дополнительно в реактор загружают функциональные добавки, в качестве которых используют защитный коллоид, и/или цветовые и/или светящиеся добавки, и/или ингибитор коррозии, и/или антикоррозионный агент, и/или биоцидную добавку, и/или диспергатор.
24. Способ по п. 23, характеризующийся тем, что в качестве защитного коллоида используют частично омыленный поливиниловый спирт со степенью гидролиза от 80 до 98 мол. %, и/или целлюлозу, и/или их карбоксиметильные, метальные, гидроксиэтильные и гидроксипропильные производные, и/или крахмал, при этом защитный коллоид используют в количестве до 50 мас. % от массы загружаемых мономеров.
25. Способ по п. 23, характеризующийся тем, что в качестве цветовых и/или светящихся добавок используют пигменты, и/или флуоресцентные пигменты, и/или водостойкие люминофоры, которые вводят в количестве до 10 мас. % от массы загружаемых мономеров.
26. Способ по п. 23, характеризующийся тем, что в качестве ингибитора коррозии используют цинксодержащую комплексную соль, например, марки SER-AD-FA-179 фирмы «Servo»; и/или нитрит натрия, и/или бензоат натрия, при этом ингибитор коррозии вводят в количестве до 2 мас. % от массы загружаемых мономеров.
27. Способ по п. 23, характеризующийся тем, что в качестве антикоррозионного агента используют оксиаминофосфатный комплекс кальция и магния, например, марки «Pigmentan ЕА» фирмы «Pigmentan Ltd», при этом антикоррозионный агент вводят в количестве до 5 мас. % от массы загружаемых мономеров.
28. Способ по п. 23, характеризующийся тем, что в качестве биоцидной добавки используют составы на основе изотиазолина и галогенизированных производных алканола, например, марки Метатин К 520 фирмы «Acima»; и/или на основе тетраметилтиурамдисульфида, например, марки Тиурам Д; и/или на основе 2-н-октил-4 изотиазолина, например, марки Скейн 8 фирмы «Rohm and Haas», при этом биоцидную добавку вводят в количестве до 5 мас. % от массы загружаемых мономеров.
29. Способ по п. 23, характеризующийся тем, что в качестве диспергатора используют составы марки ОП-7 и/или ОП-10, представляющие собой продукты обработки смеси моно- и диалкилфенолов окисью этилена, при этом диспергатор вводят в количестве до 5 мас. % от массы мономеров.
30. Способ по п. 1, характеризующийся тем, что в полученный полимерный порошок добавляют антислеживающий агент, в качестве которого используют карбонат кальция-магния, и/или тальк, и/или каолин, и/или силикаты, например гидросиликат магния, при этом антислеживающий агент вводят в количестве до 30 мас. % от массы загружаемых мономеров.
32. Полимерный порошок по п. 31, характеризующийся тем, что количество инициатора полимеризации в смеси составляет от 0,1% до 5 мас. % от массы мономеров.
33. Полимерный порошок по п. 31, характеризующийся тем, что смесь дополнительно содержит регулятор роста цепи в количестве не более 5 мас. % от массы мономеров.
34. Полимерный порошок по п. 33, характеризующийся тем, что в качестве регулятора роста цепи использованы н-додецилмеркаптан, и/или трет-додецилмеркаптан, и/или меркаптопропионовая кислота, и/или метиловый эфир меркаптопропионовой кислоты.
35. Полимерный порошок по п. 31, характеризующийся тем, что в качестве инициатора полимеризации использованы 2,2′-азоизобутиронитрил и/или перекись бензоила или их комбинации с восстановителями.
36. Полимерный порошок по п. 31, характеризующийся тем, что в качестве восстановителей использованы гидроксиметансульфинат натрия и/или аскорбиновая кислота в количестве до 5 мас. % от массы мономеров.
37. Полимерный порошок по п. 31, характеризующийся тем, что он дополнительно содержит бутанолизированный дифенилолпропанформальдегидный олигомер с молекулярной массой Mn=500-850 в количестве до 30 мас. % от массы редиспергируемого полимерного порошка, а также уротропин в качестве сшивающего агента.
38. Полимерный порошок по п. 31, характеризующийся тем, что в качестве гидрофильных мономеров использованы карбоновые кислоты, и/или нитрилы карбоновых кислот, и/или амиды.
39. Полимерный порошок по п. 31, характеризующийся тем, что в качестве гидрофобных мономеров использованы эфиры карбоновых кислот, и/или олефины и диены, и/или глицидилакрилаты, и/или винилароматические соединения, и/или винилгалогениды.
40. Полимерный порошок по п. 38, характеризующийся тем, что в качестве карбоновых кислот использованы акриловая и/или метакриловая кислоты, при этом полимерный порошок дополнительно содержит сшивающий агент, в качестве которого использованы составы на основе оксида цинка, например, марки «Zimplex 15» фирмы «Munzing Chemie GMBH» в количестве 2-5 мас. % от массы загружаемых кислот.
41. Полимерный порошок по п. 38, характеризующийся тем, что в качестве нитрилов карбоновых кислот использован акрилонитрил.
42. Полимерный порошок по п. 38, характеризующийся тем, что в качестве амидов использованы N-винилформамид, и/или N,N-диметилакриламид, и/или N-винилпирролидон, и/или диакриламид.
43. Полимерный порошок по п. 39, характеризующийся тем, что в качестве эфиров карбоновых кислот использованы сложные виниловые эфиры карбоновых кислот с 1-15 атомами углерода и/или эфиры акриловой и метакриловой кислот с разветвленными или неразветвленными спиртами с 1-15 атомами углерода.
44. Полимерный порошок по п. 43, характеризующийся тем, что в качестве сложных виниловых эфиров карбоновых кислот с 1-15 атомами углерода использованы винилацетат, и/или виниллаурат, и/или винилпивалат, и/или виниловые эфиры α-разветвленных монокарбоновых кислот с 9-15 атомами углерода.
45. Полимерный порошок по п. 43, характеризующийся тем, что в качестве эфиров акриловой и метакриловой кислот с разветвленными или неразветвленными спиртами с 1-15 атомами углерода использованы метилакрилат, и/или метилметакрилат, и/или этилметакрилат, и/или пропилакрилат, и/или н-бутилакрилат, и/или бутилметакрилат, и/или норборнилакрилат.
46. Полимерный порошок по п. 39, характеризующийся тем, что в качестве олефинов и диенов использованы этилен, и/или пропилен, и/или 1,3-бутадиен, и/или децен.
47. Полимерный порошок по п. 39, характеризующийся тем, что в качестве глицидилакрилатов использованы глицидилакрилат и/или глицидилметакрилат, при этом полимерный порошок дополнительно содержит сшивающий агент, в качестве которого использованы амины в количестве 2-5 мас. % от массы глицидилакрилата.
48. Полимерный порошок по п. 39, характеризующийся тем, что в качестве винилароматических соединений использованы стирол и/или дивинилбензол.
49. Полимерный порошок по п. 39, характеризующийся тем, что в качестве винилгалогенидов использованы винилхлорид и/или винилфторид.
50. Полимерный порошок по п. 31, характеризующийся тем, что он дополнительно содержит функциональные добавки, в качестве которых использованы защитный коллоид, и/или цветовые и/или светящиеся добавки, и/или антислеживающий агент, и/или ингибитор коррозии, и/или антикоррозионный агент, и/или биоцидная добавка, и/или диспергатор.
51. Полимерный порошок по п. 50, характеризующийся тем, что в качестве защитного коллоида использованы частично омыленный поливиниловый спирт со степенью гидролиза от 80 до 95 мол. %, и/или целлюлоза, и/или их карбоксиметильные, метальные, гидроксиэтильные и гидроксипропильные производные, и/или крахмал, при этом защитного коллоида содержится в количестве до 50 мас. % от массы мономеров.
52. Полимерный порошок по п. 50, характеризующийся тем, что в качестве цветовых и/или светящихся добавок использованы пигменты, и/или флуоресцентные пигменты, и/или водостойкие люминофоры в количестве до 10 мас. % от массы мономеров.
53. Полимерный порошок по п. 50, характеризующийся тем, что в качестве антислеживающего агента использованы карбонат кальция-магния, и/или тальк, и/или каолин, и/или силикаты, например гидросиликат магния, с дисперсностью частиц от 10 нм до 10 мкм, при этом антислеживающий агент содержится в количестве до 30 мас. % от массы мономеров.
54. Полимерный порошок по п. 50, характеризующийся тем, что в качестве ингибитора коррозии использованы цинксодержащая комплексная соль, например, марки SER-AD-FA-179 фирмы «Servo»; и/или нитрит натрия, и/или бензоат натрия, при этом ингибитора коррозии содержится в количестве до 2 мас. % от массы мономеров.
55. Полимерный порошок по п. 50, характеризующийся тем, что в качестве антикоррозионного агента использованы оксиаминофосфатный комплекс кальция и магния, например, марки «Pigmentan ЕА» фирмы «Pigmentan Ltd», при этом антикоррозионного агента содержится в количестве до 5 мас. % от массы мономеров.
56. Полимерный порошок по п. 50, характеризующийся тем, что в качестве биоцидной добавки использованы составы марки Метатин К 520 фирмы Acima на основе изотиазолина и галогенизированных производных алканола; и/или марки Тиурам Д на основе тетраметилтиурамдисульфида; и/или марки Скейн 8 фирмы «Rohm and Haas» на основе 2-н-октил-4 изотиазолина, при этом биоцидная добавка содержится в количестве до 5 мас. % от массы мономеров.
57. Полимерный порошок по п. 50, характеризующийся тем, что в качестве диспергатора использованы составы марки ОП-7 и/или ОП-10, представляющие собой продукты обработки смеси моно- и диалкилфенолов окисью этилена, при этом диспергатор содержится в количестве до 5 мас. % от массы мономеров.