С помощью теоремы чевы докажите что биссектрисы треугольника пересекаются в 1 точке
Теорема Чевы
Теорема Чевы 1
. | (1) |
![]() | (2) |
![]() | (3) |
![]() | (4) |
![]() | (5) |
Перемножая равенства (2 – 5), получим
Доказательство необходимости завершено.
Воспользуемся методом «от противного». С этой целью обозначим буквой O точку пересечения отрезков AA1 и CC1 и предположим, что отрезок BB1 не проходит через точку O (рис. 3).
Проведём через точку O отрезок BB2 (рис. 4).
Поскольку отрезки AA1, BB2 и CC1 пересекаются в одной точке, то выполнено равенство
![]() | (6) |
Кроме того, выполнено равенство
![]() | (1) |
Разделив равенство (6) на равенство (1), получим равенство
следствием которого является равенство
![]() | (7) |
Из равенства (7) вытекает, что точки B1 и B2 совпадают.
Доказательство достаточности завершено.
Теорема Чевы 2
. | (8) |
![]() | (9) |
![]() | (10) |
![]() | (11) |
![]() | (12) |
Перемножая равенства (9 – 12), получим
Доказательство необходимости в случае «а» завершено.
![]() | (13) |
![]() | (14) |
Поскольку четырёхугольники ADBB1 и BECB1 параллелограммы, то выполнено равенство
откуда вытекает равенство
![]() | (15) |
Перемножая равенства (13 – 15), получим
Доказательство необходимости в случае «b» завершено.
Применения теоремы Чевы
В разделе нашего справочника «Медиана треугольника» доказана теорема о том, что медианы треугольника пересекаются в одной точке. Приведём другое доказательство этой теоремы, основанное на теореме Чевы. С этой целью рассмотрим медианы AA1, BB1 и CC1 треугольника ABC (рис.9).
то выполнено равенство

откуда вытекает, что отрезки AA1, BB1 и CC1 пересекаются в одной точке. Теорема доказана.
В разделе нашего справочника «Окружность, вписанная в треугольник» доказана теорема о том, что биссектрисы треугольника пересекаются в одной точке. Приведём другое доказательство этой теоремы, основанное на теореме Чевы. С этой целью рассмотрим биссектрисы AA1, BB1 и CC1 треугольника ABC (рис.10).
В соответствии со свойством биссектрисы справедливы равенства
Если перемножить эти три равенства, то мы получим равенство

из которого вытекает, что отрезки AA1, BB1 и CC1 пересекаются в одной точке. Теорема доказана.
В разделе нашего справочника «Высота треугольника» доказана теорема о том, что высоты треугольника пересекаются в одной точке. Приведём другое доказательство этой теоремы, основанное на теореме Чевы. С этой целью рассмотрим сначала высоты AA1, BB1 и CC1 остроугольного треугольника ABC (рис.11).
то, перемножив эти три равенства, мы получим равенство

из которого вытекает, что отрезки AA1, BB1 и CC1 пересекаются в одной точке. Теорема о пересечении высот остроугольного треугольника доказана.
Теперь рассмотрим случай тупоугольного треугольника (рис. 12).
то, перемножив эти три равенства, мы получим равенство

из которого вытекает, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Теорема о пересечении высот тупоугольного треугольника доказана.
Доказывать теорему о том, что в случае прямоугольного треугольника все высоты пересекаются в одной точке не нужно, поскольку все высоты прямоугольного треугольника пересекаются в вершине прямого угла.
Теорема о пересечении высот треугольника доказана полностью.
Теперь с помощью теоремы Чевы докажем следующую теорему.
Из этих равенств получаем:
Отсюда с помощью теоремы Чевы заключаем, что отрезки AA1, BB1 и CC1 пересекаются в одной точке. Теорема доказана.
Теорема Чевы: формулировка и пример с решением
В данной публикации мы рассмотрим одну из классических теорем аффинной геометрии – теорему Чевы, которая получила такое название в честь итальянского инженера Джованни Чевы. Также разберем пример решения задачи, чтобы закрепить представленный материал.
Формулировка теоремы
Дан треугольник ABC, в котором каждая вершина соединена с точкой на противоположной стороне.
Таким образом, мы получаем три отрезка (AA’, BB’ и CC’), которые называются чевианами.
Данные отрезки пересекаются в одной точке тогда и только тогда, когда выполняется следующее равенство:
Теорему можно, также, представить в таком виде (определяется, в каком соотношении точки делят стороны):
Тригонометрическая теорема Чевы
Примечание: все углы – ориентированные.
Пример задачи
Дан треугольник ABC с точками A’, B’ и C’ на сторонах BC, AC и AB, соответственно. Вершины треугольника соединены с данным точками, и образованные отрезки проходят через одну точку. При этом точки A’ и B’ взяты на серединах соответствующих противоположных сторон. Выясните, в каком соотношении точка C’ делит сторону AB.
Решение
Нарисуем чертеж согласно условиям задачи. Для нашего удобства примем следующие обозначения:
Остается только составить соотношение отрезков согласно теореме Чевы и подставить в него принятые обозначения:
После сокращения дробей получаем:
Значит, AC’ = C’B, т.е. точка C’ делит сторону AB пополам.
Следовательно, в нашем треугольнике отрезки AA’, BB’ и CC’ являются медианами. Решив задачу мы доказали, что они пересекаются в одной точке (справедливо для любого треугольника).
Примечание: с помощью теоремы Чевы можно доказать, что в треугольнике в одной точке, также, пересекаются биссектрисы или высоты.
Обобщающий урок «Теоремы Менелая и Чевы»
Разделы: Математика
Оборудование: мультимедийный проектор. Приложение 1.
1. Организационный момент.
Точка С1 делит сторону АВ треугольника АВС в отношении 2 : 1. точка В1 лежит на продолжении стороны АС за точку С, и АС = СВ1. В каком отношении делит прямая В1 С1 сторону ВС? (на слайде 2).
Решение: По условию

В треугольнике АВС АD – медиана, точка О – середина медианы. Прямая ВО пересекает сторону АС в точке К.
В каком отношении точка К делит АС, считая от точки А? (на слайде 3).
В треугольнике АВС на стороне ВС взята точка N так, что NС = 3ВN; на продолжении стороны АС за точку А взята точка М так, что МА = АС. Прямая МN пересекает сторону АВ в точке F. Найдите отношение 
Решение: По условию задачи МА = АС, NС = 3 ВN. Пусть МА = АС = b, BN = k, NC = 3k. Прямая МN пересекает две стороны треугольника АВС и продолжение третьей. По теореме Менелая
На стороне PQ треугольника PQR взята точка N, а на стороне РR – точка L, причем NQ = LR. Точка пересечения отрезков QL и NR делит QR в отношении m : n, считая от точки Q. Найдите PN : PR. (на слайде 5).
Решение: По условию NQ = LR, 
3. Отработка практических навыков.
Докажите теорему: Медианы треугольника пересекаются в одной точке; точка пересечения делит каждую из них в отношении 2 : 1, считая от вершины. (рисунок 1 слайд 6).
Доказательство: Пусть АМ1, ВМ2, СМ3 – медианы треугольника АВС. Чтобы доказать, что эти отрезки пересекаются в одной точке, достаточно показать, что 
Итак, доказано, что медианы треугольника пересекаются в одной точке.
Пусть О – точка пересечения медиан. Прямая М3С пересекает две стороны треугольника АВМ2 и продолжение третьей стороны этого треугольника. По теореме Менелая


Рассматривая теорему Менелая для треугольников АМ1С и АМ2С, мы получаем, что

Докажите теорему: Биссектрисы треугольника пересекаются в одной точке. (рисунок 2 слайд 6).
Доказательство: Достаточно показать, что 


Докажите теорему: Высоты остроугольного треугольника пересекаются в одной точке. (рисунок 3 слайд 6).
Доказательство: Пусть АН1, АН2, АН3 – высоты треугольника АВС со сторонами a, b, c. Из прямоугольных треугольников АВН2 и ВСН2 по теореме Пифагора выразим, соответственно, квадрат общего катета ВН2, обозначив АН2 = х, СН2 = b – х.
Итак, АН2 = 

Аналогично рассуждая для прямоугольных треугольников АСН2 и ВСН3, ВАН1 и САН1, получим АН3 = 


СН1 = 
Для доказательства теоремы достаточно показать, что 
Задачи 5 – 7 самостоятельное решение 3 учащихся. (чертежи на экране).
2. остальные:
Докажите теорему: Если в треугольник вписана окружность, то отрезки, соединяющие вершины треугольника с точками касания противоположных сторон пересекаются в одной точке. (на рисунке 4 слайд 6).
Доказательство: Пусть А1, В1 и С1 – точки касания вписанной окружности треугольника АВС. Для того, чтобы доказать, что отрезки АА1, ВВ1 и СС1 пересекаются в одной точке, достаточно показать, что выполняется равенство Чевы:


3. Разбор задач 5, 6, 7.
Пусть АD – медиана треугольника АВС. На стороне АD взята точка К так, что АК : КD = 3 : 1. Прямая ВК разбивает треугольник АВС на два. Найдите отношение площадей этих треугольников. (на слайде 7 рисунок 1)
Решение: Пусть АD = DC = a, KD = m, тогда АК = 3m. Пусть Р – точка пересечения прямой ВК со стороной АС. Необходимо найти отношение 






В треугольнике АВС, описанном около окружности, АВ = 8, ВС = 5, АС = 4. А1 и С1 – точки касания, принадлежащие соответственно сторонам ВС и ВА. Р – точка пересечения отрезков АА1 и СС1. Точка Р лежит на биссектрисе ВВ1. Найдите АР : РА1.
(на слайде 7 рисунок 2)
Решение: Точка касания окружности со стороной АС не совпадает с В1, так как треугольник АВС – разносторонний. Пусть С1В = х, тогда, используя свойство касательных, проведенных к окружности из одной точки, введем обозначения (см рисунок) 8 – х + 5 – х = 4, х = 
В треугольнике АВА1 прямая С1С пересекает две его стороны и продолжение третьей стороны. По теореме Менелая 
Стороны треугольника 5, 6 и 7. Найдите отношение отрезков, на которые биссектриса большего угла этого треугольника разделена центром окружности, вписанной в треугольник. (на слайде 7).
Решение: Пусть в треугольнике АВС АВ = 5, ВС = 7, АС = 6. Угол ВАС лежит против большей стороны в треугольнике АВС, значит, угол ВАС – больший угол треугольника. Центр вписанной окружности треугольника лежит на пересечении биссектрис. Пусть О – точка пересечения биссектрис. Необходимо найти АО : ОD. Так как АD – биссектриса треугольника АВС, то 


4. Самостоятельное решение задач 9, 10, 11. – 3 учащихся.
Задача 12 (для всех оставшихся учащихся класса):
Биссектрисы ВЕ и АD треугольника АВС пересекаются в точке Q. Найдите площадь треугольника АВС, если площадь треугольника BQD = 1, 2АС = 3 АВ, 3ВС = 4 АВ. (рисунок 4 на слайде 7).
Треугольники АВС и ВЕС имеют равные высоты, проведенные из вершины В, значит, 

5. Разбор задач 9, 10, 11.
Решение задач – практикум:
А. На сторонах ВС, СА, АВ равнобедренного треугольника АВС с основанием АВ взяты точки А1, В1, С1, так что прямые АА1, ВВ1, СС1 – конкурентные.
Докажите, что
По теореме Чевы имеем: 

Что и требовалось доказать.
По теореме Менелая для треугольника АВС и секущей MN имеем:



Для треугольника MNC и секущей АВ по теореме Менелая имеем: 
8. Самостоятельное решение задач: 1 вариант:
1. На продолжениях сторон АВ, ВС, АС треугольника АВС взяты соответственно точки С1, А1, В1 так, что АВ = ВС1, ВС = СА1, СА = АВ1. Найдите отношение в котором прямая АВ1 делит сторону А1С1 треугольника А1В1С1. (3 балла).
2. На медиане СС1 треугольника АВС взята точка М. Прямые АМ и ВМ пересекают стороны треугольника соответственно в точках А1 и В1. Докажите, что прямые АВ и А1В1 параллельны. (3 балла).
3. Пусть на продолжении сторон АВ, ВС и АС треугольника АВС взяты соответственно точки С1, А1 и В1. Докажите, что точки А1, В1, С1 лежат на одной прямой тогда и только тогда, когда выполняется равенство 
4. Используя теорему Чевы, докажите, что высоты треугольника или их продолжения пересекаются в одной точке. (4 балла).
5. Докажите, что прямые, проходящие через вершины треугольника и точки касания вневписанных окружностей, пересекаются в одной точке (точке Нагеля). (Окружность называется вневписанной в треугольник, если она касается одной стороны этого треугольника и продолжений двух других его сторон). (5 баллов).
6. Пусть на сторонах АВ, ВС и АС треугольника АВС взяты соответственно точки С1, А1 и В1 так, что прямые АА1, ВВ1, СС1 пересекаются в точке О. Докажите, что выполняется равенство 
7. Пусть на ребрах АВ, ВС, СD и АD тетраэдра АВСD взяты соответственно точки А1, В1, С1, D1. Докажите, что точки А1, В1, С1, D1 лежат в одной плоскости тогда и только тогда, когда выполняется равенство 
1. Точки А1 и В1 делят стороны ВС и АС треугольника АВС в отношениях 2 : 1 и 1 : 2. Прямые АА1 и ВВ1 пересекаются в точке О. Площадь треугольника АВС равна 1. Найдите площадь треугольника ОВС. (3 балла).
2. Отрезок МN, соединяющий середины сторон АD и ВС четырехугольника АВСD делится диагоналями на три равные части. Докажите, что АВСD – трапеция, одно из оснований АВ или СD, которое в двое больше другого. (3 балла).
3. Пусть на стороне АВ и продолжении сторон ВС и АС треугольника АВС взяты соответственно точки С1, А1 и В1. Докажите, что прямые АА1, ВВ1, СС1 пересекаются в одной точке или параллельны тогда и только тогда, когда выполняется равенство 
4. Используя теорему Чевы, докажите, что высоты треугольника или их продолжения пересекаются в одной точке. (4 балла).
5. Докажите, что прямые, проходящие через вершины треугольника и точки касания вневписанных окружностей, пересекаются в одной точке (точке Нагеля). (Окружность называется вневписанной в треугольник, если она касается одной стороны этого треугольника и продолжений двух других его сторон). (5 баллов).
6. Пусть на сторонах АВ, ВС и АС треугольника АВС взяты соответственно точки С1, А1, В1 так, что прямые АА1, ВВ1 и СС1 пересекаются в точке О. Докажите, что выполняется равенство 
7. Пусть на ребрах АВ, ВС, СD и АD тетраэдра АВСD взяты соответственно точки А1, В1, С1, D1. Докажите, что точки А1, В1, С1, D1 лежат в одной плоскости тогда и только тогда, когда выполняется равенство 
9. Домашнее задание: учебник § 3, № 855, № 861, № 859.








































































