С помощью чего передвигаются рыбы
С помощью чего передвигаются рыбы?
Как передвигаются рыбы?
Способы передвижения рыб?
За время эволюции, у рыб выработалась оригинальная костно-мышечная система, которая позволяет им двигаться и корректировать своё положение в воде с помощью плавников, приводимых в движение мышцами. Большинство рыб имеют парные грудные и брюшные, а также спинные, анальные и хвостовые плавники.
Плавники рыб соединены с позвоночником сухожилиями и мышцами. Волнообразные движения с одновременным сокращением мышц создают движущую силу.
Мускулатура рыб бывает двух типов: при монотонном движении, работают медленные мышцы, которые, постоянно насыщаясь кислородом, практически не утомляются. Быстрые мышцы способны быстро сокращаться и используются при резких рывках, но быстро утомляются.
За счет движения хвоста и плавников.. а воздушный пузырь в их брюхе не дает им идти ко дну
Нужно заметить, что в класс пресмыкающихся входят достаточно разные по способу передвижения животные и здесь хотелось бы отметить, что все нам известное название «пресмыкающиеся», получило именно от их передвижения, когда приподымание тела на коротких ногах подразумевает «пресмыкание», заключающееся в волочение по земле хвоста.
Поэтому большинство пресмыкающихся передвигается на четырех конечностях, которые расставлены парно по бокам туловища. Для увеличения своей скорости передвижения пресекающиеся приподымают выше туловище.
Некоторые пресмыкающиеся утратили конечности, такие как змеи и они передвигаются змеевидными движениями, которые подразделяются на :
У морских черепах, лапы представляют вид ласт, которыми им удобно передвигаться в воде.
Самым распространенным способом передвижения птиц является полет. Его разделяют на машущий и
парящий. Также птицы хорошо перемещаются по земле, лазают по деревьям и скалам, ныряют и плавают.
По земле птицы передвигаются или шагами, или скачками, которые отличаются по длине и по
Передвижение шагом характерно для чаек, голубей, куриных птиц, скворцов. А вот вороны, грачи и
галки могут и ходить, и скакать. Некоторые птицы меняют скорость хождения и даже переходят на
бег. Такие птицы, как гуси, утки и лебеди в основном медленно ходят из-за наличия перепонок на
лапах. А гагары вообще ползут на брюхе, отталкиваясь задними конечностями. Стрижи могут только
ползать по земле и не могут взлетать с ровной поверхности.
Есть птицы, которые не могут передвигаться по земле, так как у них очень короткие ноги. Они
цепляются за кору деревьев или за каменистую поверхность скал.
Водные птицы могут плавать по воде и под водой, нырять, даже с большой высоты, и просто
Передвижение рыб
Введение
Угорь скользит меж камней и, ускоряясь, одним рывком скрывается в узкой расщелине. В центральной колонне застыла зебрасома, в то время как нахальный губанчик делает резкие выпады, хватая и поглощая небольшими порциями закуску из паразитов. Поодаль, вокруг своего домика из актиний, безучастно взирая на остальных, неспешно плавает рыба-клоун.
Как правило, мы употребляем слово «плавать» для объяснения перемещения рыб под водой, но на самом деле их движения это нечто большее. Да, рыбы плавают, но сказать, что они всего лишь плавают – чрезмерное упрощение. Они ведь так по-разному это делают. Только представьте змееобразных извивающихся рыб, бороздящих океаны тунцов и хрупких морских коньков. Все они являются подтверждением эволюционной уникальности, каждая из которых адаптирована к своему образу жизни. Превосходная обтекаемость форм позволяет рыбам рассекать плотную среду обитания, прорезать это густое вязкое вещество коим является вода.
Вероятно, было бы более справедливым называть это не просто плаванием, а классифицировать различные его формы. Во многих случаях большую часть массы тела рыбы составляют плавательные мышцы, в то время как внутренние органы, такие как сердце и печень, едва ли не собраны где-то в стороне, как нечто второстепенное.
Когда мы представляем себе плывущую рыбу, многие из нас видят величавые, стремительные движение из стороны в сторону. Их обычно совершают акулы и другие быстрые морские обитатели: сельдь, скумбрия, марлин. И в этом нет ничего предосудительного, потому что этих рыб можно считать эталоном.
Суб-карангиформный и карангиформный тип локомоции
Такая классическая техника плавания носит одно из двух названий, зависящих от того, насколько задействовано тело. Если для продвижения используется большая часть тела, где-то между половиной и двумя третями её длины, тогда рыба имеет суб-карангиформный тип локомоции (subcarangiform). Если мышцы, приводящие тело в движение, перенести на последнюю треть длины тела (в основном хвост), то получится карангиформный тип (carangiform).
Форель и лосось характеризуются суб-карангиформным типом локомоции. Особенности их внешнего строения позволяют длительное время плыть прямиком через озёра или вверх по рекам. Они могут совершать быстрые маневры в случае нападения хищников, во время охоты за добычей или же борьбы с постоянно меняющимися течениями.
Виды, обладающие карангиформной манерой передвижения, лучше подготовлены к длительному быстрому плаванию. Океанические обитатели, такие как барракуда, сталкиваются с различными течениями, с которыми сталкивается и речная рыба. Часто эти рыбы объединяются в огромные косяки, что исключает необходимость совершать резкие выверенные движения в скоростном потоке.
Косяк барракуд (илл. uwphotographyguide.com)
Многие из них, если не все, очень быстры и при необходимости удивительно проворны. Вряд ли читатель наблюдал скумбрию в действии, гораздо более вероятно, он мог ощутить силу и проворство сельди среднего размера, которая попала к нему на рыболовный крючок.
Амииформный тип локомоции
Следующая техника, которую демонстрирует скромный морской конёк, встречается достаточно редко. Её представители демонстрируют амииформную манеру перемещения (amiiform). При этом движения ограничены невероятно быстрыми колебаниями спинного плавника. Для большинства рыб, спинной плавник является единственным плавником в верхней части тела.
У морских коньков, учитывая их необычное вертикальное положение тела, спинной плавник расположен по центру вдоль спины и ориентирован в противоположном от головы направлении. Как таковой, он используется в качестве основного управляющего механизма.
Тем не менее, даже с учетом высоких скоростей, которые морскому коньку дают плавники с их удобным расположением, он представляется весьма жалким пловцом. Его постоянно сносит в сторону малейшим изменением течения, создаваемым более быстрыми собратьями по водоёму.
Тунниформный тип локомоции
Наиболее распространенными мореплавателями считаются, как правило, обладатели тунниформного типа локомоции (thunniforms). Классическим примером является, конечно же, тунец, в честь которого и назван данный тип передвижения. Тунец чемпион среди скоростных пловцов на длинные дистанции. Используя еле заметные движения туловищем, он управляет при этом крупным серповидным хвостом. Моторика хвоста обусловлена поразительно развитой мускулатурой и похожими на провода сухожилиями.
Но дело не только в хвосте. Совершаемые хвостом гребки определяют до 85% движения передней части тела при субкарангиформном, карангиформном и тунниформном типах локомоции.
Полосатый тунец (Katsuwonus pelamis) (илл. portal.nfrdi.re.kr).
Тем не менее, другие плавники также выполняют ряд важных функций. В частности, спинной плавник служит для совершения резких поворотов и торможения. Рыбы, располагающие вторым спинным плавником, используют его также, чтобы совершать рывок вперед. В некоторых случаях он задействуется на 15%.
Анальные плавники выступают в роли тормоза, брюшные обеспечивают и торможение и всплытие, а грудные помогают совершать быстрые повороты. У каждого вида плавников есть своё назначение и зачастую не одно.
Лабриформный тип локомоции
Губаны (Labridae, семейство окунеобразных) демонстрируют технику плавания окунеобразных (лабриформный тип или labriform). Они вращают своими грудными плавниками, как олимпийские спортсмены, плывущие в стиле «баттерфляй». Помимо губанов, многие аквариумные виды рыб могут также её демонстрировать. Важно не путать этот стиль с тем, что используют скаты.
Рейформный тип локомоции
Скаты и, в меньшей степени, спинопёры имеют собственную технику, обозначаемую как скатообразный или рейформный (rajiformes) тип локомоции. Преимущество скатов перед многими другими рыбами состоит в том, что они более гибкие, благодаря хрящевому скелету, который в полной мере способствует подобному передвижению.
В отличие от жёстких плавниковых лучей губанов, скат может изгибать свои «крылья» и совершать замысловатые колебательные движения. Это позволяет оптимизировать процесс отталкивания плавниками от очень большой площади поверхности воды.
Манта или гигантский морской дьявол (Manta birostris).
Острацииформный тип локомоции
В условиях аквариума наблюдатель сможет разглядеть, главным образом, движения грудных плавников, если только аквариумист не содержит ёмкость полную угрей! Два грудных плавника, как правило, наиболее активно используемых, предназначены для совершения координированных движений. Акулам они необходимы в качестве рулей, в особенности, для перемещения вверх или вниз, тогда как значительная часть других рыб всё равно используют грудные плавники для совершения толчков и поступательного движения вперед (острацииформный тип локомоции или ostraciiforms).
Классическим примером последних являются представители надсемейства Кузовкоподобных (Ostracioidea). Семейство Кузовковые (Ostraciidae), например, рыба-собака, типичная таксономическая единица данного надсемейства. Их ключевая особенность заключается в переложении функции руля на хвостовой плавник, в то время как грудные плавники проталкивают тело через толщу воды.
Балистиформный тип локомоции
Парные плавники не обязательно должны располагаться по бокам рыбы. Иглобрюхи и кузовки, любопытные любимчики туристов, используют спинные и анальные, а не грудные плавники, чтобы продвигать тело вперёд.
Передвижение спинорога Пикассо колючего (Rhinecanthus aculeatus) по аквариуму. Можно отметить активную работу спинного и анального плавников.
Передвижения рыбы луны, у которой отсутствует хвостовой плавник.
Ангуиллиформный тип локомоции
Наконец, любителя природы ни могут не завораживать гипнотические движения угрей, демонстрирующих ангуиллиформный тип локомоции (anguilliform). Это слово происходит от «Anguis» или «Anguilla», означающие «змея» и «угорь», соответственно. Как змеи, так и угри решили сказать решительное «нет» необходимости иметь конечности для передвижения, по крайней мере, там, где речь идёт о плавании.
Наблюдая за волнообразными движениями их длинного тела, нельзя не отметить чрезвычайно развитую мускулатуру угрей, достойную самых заядлых бодибилдеров. Хотя в некоторых случаях грудные плавники все ещё могут сохраняться, например, у представителей семейства Колючих угрей (Mastacemblidae), они играют незначительную роль в перемещении.
Хвост угрей может быть таким же цепким как хвост обезьяны. Стоит привести в пример мурену, которая способна молниеносно выбрасываться из своего логова и настолько же быстро забираться обратно, прихватив с собой добычу. При этом тело используется для сцепления с неподвижным предметом в норе, что повышает тяговую силу.
Просто удивительно, насколько обладатели ангуиллиформного типа локомоции гидродинамически идеально подходят как для движения вперед, так и назад. Как правило, их тело не покрыто чешуей, либо имеет очень мелкие чешуйки. Это в некоторой степени способствует беспрепятственному передвижению назад, и немного объясняет, почему угри оставляют после себя скользкий след.
Тема передвижения рыб очень сложная и практически неисчерпаемая. Представленная характеристика даёт общее понимание о техниках плавания и того, насколько легко не различать, а принимать все эти типы передвижений как должное.
Помимо описанных в данной статье рыб, также существуют виды с «ногами» и, использующие для передвижения выталкивание струй воды.
ФИЗИОЛОГИЯ ДВИЖЕНИЯ И МУСКУЛАТУРА РЫБ
10.1Механизм движения рыб и роль плавников Механическое движение занимает важное место в жизненных процессах. Рыба перемещается в воде — плавает, прокачивает воду сквозь жаберный аппарат, сердце проталкивает кровь по сосудам, кишечник проталкивает пищу. Имеются и другие, менее заметные, но тоже очень важные формы механического движения — изменяется просвет кровеносных сосудов зрачка глаз, сокращаются и растягиваются стенки пузыря, сжимаются и расслабляются кольца
| Рис.65.Хвостовой плавник судака: 1-Конец позвоночного столба-уростиль, 2-гипуралии, 3-кожные и костные лучи-лепидотрихии |
На брюшной стороне туловища, каудальное место прикрепления брюшных плавников имеется анальное отверстие, а сразу за ним – мочеполовой сосочек; у части рыб он представляет собой углубление с двумя отдельными отверстиями; мочевым (заднее) и половым. Место расположения заднепроходного, полового и мочевого отверстий за границей тазового и хвостового позвонка.
Плечевой пояс имеет вид хрящевого полукольца, лежащего в мускулатуре стенок тела позади жаберного отдела. Часть пояса называется лопаточным отделом, вентральнее – коракойдным. В основании скелета свободной конечности расположены 3 уплощенные базальные хрящи. Дистальнее базальных хрящей расположены в 3 ряда палочковидные радиальные хрящи. Остальная часть лопасти свободного плавника поддерживается многочисленными тонкими эластиновыми нитями – элементами вторичного кожного скелета.
Тазовый пояс – представлен хрящевой пластинкой, лежащей в толще брюшной мускулатуры перед клоакальной щелью. В брюшных плавниках имеется только один базальный элемент. Он сильно удлинен, и к нему прикрепляется один ряд радиальных хрящей. Остальная часть свободного плавника поддерживается эластиновыми нитями. У самцов удлиненный базальный элемент продолжается за пределы лопасти плавника как скелетная основа копулятивного выроста.
10.1.1 Непарные плавники. Представлены хвостовым анальным и спинным плавниками. У ключей акулы анального плавника нет. Хвостовой плавник акул гетероцеркальный, его верхняя лопасть значительно длиннее нижней, осевой скелет – позвоночник заходит только в верхнюю лопасть.
Скелетную основу хвостового плавника образуют удлиненные верхние и нижние дуги позвонков. Большая часть лопасти хвостового плавника поддерживается эластиновыми нитями. В основании скелета спинных и анальных плавников лежат радиальные хрящи, которые погружены в толщу мускулатуры. Иногда они сливаются в более крупные образования. Свободная лопасть плавника поддерживается эластиновыми нитями. У колючей акулы перед каждым спинным плавником расположен роговой шип, который, как и плакоидные чешуи, представляет собой элемент кожного скелета.
10.1.2 Жаберные крышки.Жаберные дуги представлены каждая четырьмя парными косточками, подвижно сочлененными между собой, и объединяющимися снизу при помощи непарных костных элементов. Пятая, самая задняя жаберная дуга, имеет лишь один парный (нижний) отдел.
Жаберные крышки состоят из четырех вторичных (покровных) костей: крышки (opezculum) и межкрышки (intezopezculum). Жаберная крышка каждой стороны через предкрышечную кость прикрепляется к соответствующей подвеске и к квадратной кости.
10.1.3 Парные конечности и их пояса.Парные конечности представлены грудными и брюшными плавниками. Опорой грудных плавников в теле рыбы служит плечевой пояс. Он представлен двумя небольшими замещающими (первичными) и несколькими покровными костями. Верхняя из замещающих костей – лопатка (scapula) расположена в области причленение свободной конечности. Сразу под ней находится коракоид (coracoideum). Эти два элемента составляют первичный пояс. Они неподвижно соединены с крупной покровной костью клейтрум (coracoideum), верхний конец которой направлен несколько вперед; к нему присоединяется небольшая кость надклейтрум (supracleithum). Клейтрум в свою очередь соединяется с заднетеменной (posttemporale) костью. Направленные вперед нижние концы правого и левого клейтрумов соединяются друг с другом. Позади клейтрума неподалеку от лопатки и коракоида расположена небольшая заднеключичная кость (postcleithrum).
Все названные кости парные, они составляют вторичный плечевой пояс. Правая и левая заднетеменные кости причленяются к осевому черепу, что обеспечивает более прочную фиксацию пояса, и таким ообразом усиливает его опорную функцию.
Рис. 66. Скелет парных плавников и их поясов:
А – хрящевая рыба; Б – костистая рыба; 1 – грудной плавник с плечевым поясом;11 – брюшной плавник с тазовым поясом; 1 – лопаточный отдел; 2 – коракоидный отдел; 3 – базалии; 4 – радиалии; 5 – плавниковые лучи; 6 – птеригоподии; 7 –лопатка; 8 – коракоид; 9 – клейт-рум; 10 – задняя клейтрум; 11 – надклейтрум; 12 – задневисочная кость; 13 – тазовая кость
Грудной плавник в своем основании имеет один ряд мелких косточек – радиалий (radialia), отходящих от лопатки (частично и от коракоида). Вся свободная лопасть плавника состоит из членистых кожных лучей (lepidotrichia). Особенность скелета грудных плавников костистых рыб, по сравнению с хрящевыми, заключаются в редукции базалий. Подвижность грудных плавников увеличивается потому, что мышцы прикрепляются к расширенным основаниям кожных лучей, подвижно сочленяющихся с радиалами.
Тазовый пояс представлен сливающимися друг с другом парными плоскими треугольными костями, лежащими в толще брюшной мускулатуры и не связан с осевым скелетом. К боковым сторонам тазового пояса причленяются брюшные плавники. У большинства костистых рыб в скелете брюшных плавников лопасть плавника поддерживается кожными костными лучами (lepidotrichia), расширенные основания, которых непосредственно причленяются к тазовому поясу. Такое упрощение скелета брюшных плавников связано с их ограниченными функциями.
10.1.4 Непарные конечности.Непарные конечности представлены спинными, подхвостовыми (анальным) и хвостовым плавниками. Анальные и спинные плавники состоят из костных лучей, подразделяющихся на внутренние (скрытые в толще мускулатуры) птиригофоры и наружные плавниковые лучи – лепидотрихии.
Хвостовой плавник, имеет влияние равнолопастное строение, однако при рассмотрении его внутреннего скелета видно, что концевые позвонки позвоночного столба сливаются в палочковидную косточку – уростиль (urostal), которая заходит в основание лишь верхней лопасти плавника, а основание нижней лопасти поддерживается расширенными, довольно широкими нижними дугами позвонков гипуралиями. Такой тип строения хвостового плавника, носит название галоцеркального. Наружный скелет хвостового плавника составлен многочисленными кожными лучами – лепидотрихиями.
Из многочисленных способов движения известных среди животных, рыбам свойственны три: плавания, ползания и полет.
В зависимости от выполняемой функции, плавники делят на две группы. Первую группу составляют приспособления, непосредственно направленные на создание локомоторной силы, т.е. морфологические особенности, которые определяются отношением двигателя рыбы. Вторая группа- приспособления, которые движущаяся рыба встречает со стороны определяющей ее виды.
10.2 Функция локомоции и строение хвостового плавника.Функции хвостового плавника многообразны.
1. Хвостовой плавник участвует в общей локомоторной работе туловища, создавая силу, которая толкает рыбу вперед;
2. Действуя, как пассивная несущая полость, итероцеркальный хвостовой плавник создает некоторую подъемную силу, поддерживающую заднюю часть тела рыбы;
3. Хвостовой плавник является стабилизатором и отчасти вертикальным путем.
Хвостовой плавник у большинства рыб способен производить ряд сложных движений. Служит для изменения направления движения в вертикальной плоскости.
Первые три функции могут быть названы пассивными функциями хвостового плавника, так как при отправлении этих функций он действует просто как плоскость, более или менее метко прикрепленная на конце хвостового стебля. Последняя же функция является активной, так как при ее отправлении хвостовой плавник выполняет ряд сложных собственных движений и действует не просто как единая плоскость, а как сложная система, состоящая из отдельных элементов – лучей подвижно скрепленных с концом позвоночного столба. Особенности функции хвостового плавника у различных рыб определяют его форму, в отношении которой должны быть отличены в первую очередь два случая; хвостовой плавник, не разделенный на две лопасти, и хвостовой плавник, раздельный на две лопасти.
Плавание свойственно всем без исключения рыбам. Другие два способа характерны только для немногих видов, причем всегда имеют второстепенное значение. Наиболее общий и типичный для рыб способ движения плавания охватывает собой целый ряд модификации, которые могут быть разделены на две группы:
Первая группа заключает в себе способы плавания, в основе которых лежат волнообразные латеральные изгибания туловища.
Вторая группа – все остальные способы плавания, основу которых составляют те или иные движения плавников по характеру совершаемых плавательных движении делятся на 2 группы. Первая группа плавания основывается на движении плавников неундулирующего типа; преимущественно работа с грудными плавниками, при которых плавник отводится от тела в горизонтальном положении, затем ставится вертикально и приводится к телу, создавая в этот момент определенную локомоторную силу. Способ плавания Chronus chronus (L) u Crenilohrustina (L).Неундулирующие движения плавников являются второстепенным способом движения, при медленном плавании. Основным способом движения оно становится только у некоторых прибрежных медленно плавающих видов. Неундулирующие движения плавников используются в ряде случаев и для передвижения по грунту, как у Gohius иногда и для закапывания в грунт.
Другая группа имеет в своей основе ундулирующие движения плавников спинного и анального. Этот способ плавания встречаются у скатов. Громадному большинству рыб свойственно плавание при помощи латеральных изгибании, этот способ движения является для рыб закономерным. В основе локомоции при помощи ундулирующих движении плавников, лежат волнообразные изгибания пластинки плавника, обусловленные последовательности поперечности отношениями лучей.
Поступательное движение рыб в разных случаях обеспечивается ундуляцией грудных, спинного или анального плавников или же той или иной комбинацией действии этих плавников. У скатов единственным органом локомоции являются чрезвычайно расширенные грудные плавники. Большая поверхность этих плавников и значительная дорзовентральная подвижность их лучей превращает их в прекрасный ундулирующий аппарат. Волны ундуляции приходят по плавникам спереди назад, создавая движущую силу, направленную вперед. Дублирующими мембранами, сообщающими рыбе поступательные движения, являются спинной и анальные плавники. В этом случае совокупное действие этих плавников создает силу, движущую рыбу вперед, причем волны ундуляции на плавниках направлены параллельно линиям основания плавника. Благодаря волнообразным изгибаниям пластинки плавника, возникают силы, толкающие рыбу вперед.
Функции зоны II выполняются той частью спинного плавника, которая расположена спереди от центра тяжести, а также брюшными плавниками и отчасти анальным, если эти плавники или их передние отделы расположены спереди от центра тяжести. Функции зоны II выполняются морфологическими обособленными отделами спинного и анального плавников, которые расположены сразу за центром тяжести.
Функции зоны III несут самые задние отделы спинного и анального плавников (если они приближены к заднему концу тела) и хвостовой плавник.
Указанное расположение на теле функционально специфических зон характерны для всех рыб вписывающих при помощи волнообразных изгибании тела.
10.3 Плавание рыб. Плавание рыб происходит благодаря работе поперечнополосатой мускулатуры, которая приводит в движение движительные плавники. Рыбы передвигаются в толще воды, создавая упор, т. е. отталкиваясь от среды, обладающей некоторой плотностью, вязкостью и податливостью. Проще всего понять явление упора, рассматривая гребное плавание при помощи парных грудных плавников.
Грудной плавник, закрепленный своим основанием на плечевом поясе, под действием мускулатуры совершает движения, подобные вращению калитки вокруг петель. При движении назад, во время гребка, плавник максимально расправлен и создает максимальный упор. При движении плавника вперед, при подготовке гребка, лучи сведены и создают минимальный тормозящий упор. Гребным плаванием пользуются щуки, зеленухи, колюшки, бычки, сростночелюстные и многие другие рыбы.
Движение грудных плавников у большинства рыб поочередное (типа «кроль»), но у некоторых видов, например у карпа,— одновременное (типа «брасс»). Скорость плавания при работе одних только плавников небольшая, расход энергии тоже, по-видимому, небольшой, так как в работу вовлекаются небольшие массы мускулатуры плечевого пояса. Коэффициент полезного действия мускулатуры при таком типе плавания довольно высок.
При плавниковом плавании туловищно-хвостовая мускулатура не бездействует, она в какой-то степени напряжена для поддержания обтекаемой «позы». В противном случае тело начинает пассивно колебаться в набегающем потоке, как водоросль в потоке, или как флаг на ветру (так называемый флаттер), и это вызывает торможение.
Ограниченные массы мускулатуры вовлекаются в работу при плавании с помощью непарных плавников, например спинного, анального, когда эффективный упор создают поперечные складки плавников. Наибольшие скорости достигаются рыбами при периодическом волнообразном изгибании всего тела (ундуляции). Движителем в этом случае служит почти вся поверхность тела, за исключением негибкой головы.
При движении рыб активно сокращается почти вся туловищно-хвостовая мускулатура, составляющая приблизительно половину массы тела. Упор при ундуляционном плавании создается искривлением тела и движением локомоторной волны от головы к хвосту. За один цикл движения рыба могла бы продвинуться на длину тела до теоретического финиша, но в результате наличия КПД движителя 0,70 возникает пробуксовка и она проплывает расстояние до фактического финиша.
Н. В. Кокшайский охарактеризовал плавание как явление, при котором организм образует некоторую систему подвижных элементов, отталкивающих среду и одновременно отталкивающихся от нее. Длина локомоторной волны (расстояние между соседними гребнями) соизмерима с длиной рыбы.
Рис.67. Схематическое изображение плавания рыбы. Стрелки изображают направление приложения упора.
Скорость движения локомоторной волны по телу рыбы равна произведению длины волны на частоту взмахов хвоста, численно она также близка произведению длины рыбы на частоту ундуляции:
где U — скорость локомоторной полны; f—частота ундуляции; — длина локомоторной волны; L — длина рыбы. Вода представляет собой податливую среду, поэтому в ней имеет место некоторая «пробуксовка» движителей. Скорость плавания рыбы поэтому всегда меньше скорости локомоторной волны:
где КЭ — коэффициент эффективности движителя; — скорость плавания рыбы.
Максимальная скорость плавания рыбы является функцией длины тела и максимальной частоты ундуляции, т. е. максимальной частоты сокращений туловищной мускулатуры. Максимальная частота ударов хвоста при плавании некоторых достигает 30 Гц.(Таблица 20).
Длина рыбы | Частота ундуляции | |||||||
0,1 1,2 5,7 | 0,7 3,4 | 0,2 2,4 8,4 | 0,7 4,5 | 1,3 6,8 | 2,1 9,2 | 4,8 | 6,9 | 9,6 |
V = 1 [ L (3f-4)]
Где V— скорость в см./ сек.
Поэтому для сравнения скорости движения разноразмерных рыб используется обычно коэффициент скорости представляющий собой частное деление абсолютной скорости движения рыбы на корень квадратный ее длины (V).
Рыбы хорошие пловцы, в текучей воде по форме тела отличаются от хороших пловцов в стоячей воде, в частности у первых хвостовой стебель обычно значительно выше и короче, чем у вторых. В качестве примера можно сравнить форму хвостового стебля форели, приспособленной к жизни в воде с быстрым течением, и скумбрии- обитателя медленно двигающихся и стоячих морских вод.
Быстро плавая, преодолевая быстрины и перекаты, рыбы утомляются. Они не могут длительно плавать без отдыха. При большом напряжении у рыб в крови накапливается молочная кислота, которая после отдыха исчезает. Молочная кислота влияет на растворимость газов кровью и на транспортную функцию гемоглобина. Рыбы, при прохождении рыбоходов, утомляются, преодолевая их, даже гибнут.
Благодаря специфическому строению мускулатур рыб, сокращение каждого миомера вызывает изгиб тела на довольно большой протяженности, т. е. создается рычаг приложения силы. Мышечные волокна в миомерах ориентированы таким образом, что одно волокно является как бы продолжением другого и такие составные нити косо расходятся от средней линии по направлению к хвосту и краям тела.
Светлая и темная мускулатура рыб во многом различна. При спокойном плавании рыбы в крейсерском режиме число сокращений волокон темной мускулатуры равно числу плавательных движений. Сокращения волокон белой мускулатуры носят нерегулярный характер.
Существует некоторая неутомляющая частота мышечных сокращений, при которой времени между двигательными актами достаточно для полного восстановления работоспособности. При таких режимах движения происходят длительные миграции рыб. Неутомляющая средняя скорость в 5—10 раз меньше максимальной спринтерской скорости плавания. Проведенные эксперименты и наблюдения в естественных условиях показали, что лососи не утомляются при скорости плавания 1—2 длины тела в секунду, т. е. до 5 км/ч.
Рис.68. Скорости плавания быстроходных рыб: I- неутомляющая скорость;II- стайерская скорость; III- скорость средних дистанции; IV- спринтерская скорость; V- скорость прыжков с разбега
Тунцы — рекордсмены среди рыб; по скоростной выносливости могут длительное время двигаться со скоростью 3—4 длины тела в секунду, т. е. порядка 20 км/ч.
Между неутомляющими и спринтерскими скоростями имеется область, где время поддерживания скорости находится в обратной связи с заданной скоростью.
По аналогии со спортивной терминологией эту область можно разбить на «средние дистанции» — до времени движения несколько десятков минут и «стайерские дистанции». Стайерская скорость может поддерживаться несколько часов, но она все-таки не является неутомляющей, или крейсерской, скоростью (рис. 69).
Наилучшие среди рыб пловцы — тунцы, ставриды, лососи. Они плавают в 2-3 раза быстрее и выносливее, чем посредственные пловцы, такие, как осётровые, камбалы, бычки, угри.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет