Рпд что это физика
Скорость при РПД
Урок 2. Физика 9 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Скорость при РПД»
Известно что, для того чтобы найти положение тела в какой-то момент времени, нужно знать вектор перемещения, потому что именно он связан с изменением координат движущегося тела. Как же найти вектор перемещения? Ответ на этот вопрос зависит от того, какое движение совершает тело.
Рассмотрим равномерное движение тела.
Равномерное движение — это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.
Стоит отметить, что равномерное движение может быть как прямолинейным, когда траекторией движения тела является прямая линия, так и криволинейным, когда траекторий является любая кривая.
Равномерное прямолинейное движение – самый простой вид движения, так как траекторией является прямая линия.
При движении тела вдоль прямой в одном направлении перемещение тела непрерывно возрастает. Чтобы найти перемещение за некоторый промежуток времени, надо знать, как быстро оно возрастает. Быстроту этого возрастания определяют отношением перемещения к значению промежутка времени, в течение которого оно произошло. Это отношение называют скоростью равномерного прямолинейного движения тела и обозначают греческой буквой υ.
Таким образом, скорость равномерного прямолинейного движения тела — это физическая векторная величина, равная отношению перемещения тела к промежутку времени, в течение которого это перемещение произошло.
Т.е. скорость показывает, какое перемещение тело совершает в единицу времени.
Важно помнить, что единицей скорости в системе СИ является м/с.
Значит, для того чтобы найти перемещение тела заданное время t, надо знать его скорость υ. Тогда перемещение тела можно вычислить по формуле:
По формулам, написанным в векторной виде, вычисления вести нельзя. Ведь векторная величина имеет не только численное значение, но и направление. При вычислениях удобно пользоваться формулами, в которые входят не векторы, а их проекции на оси координат, так как над проекциями можно производить алгебраические действия. Тогда, в проекциях на ось х уравнение примет вид:
Это уравнение называют уравнением перемещения.
Остановимся более подробно на определении знака проекции скорости и перемещения.
– Проекция скорости и перемещения будет положительной, если тело движется в положительном направлении оси координат (х >x0).
– Проекция скорости и перемещения будет отрицательной, если тело движется в отрицательном направлении оси координат (х Оцените видеоурок
Общие сведения
Под движением в физике понимают изменение координат тела относительно других объектов с течением времени. Раздел, который изучает происходящее, называется кинематикой. Эта наука исследует только процессы перемещения, не беря во внимание причин его вызвавшего. Часто за тело принимается материальная точка, физическими размерами которой пренебрегают. Это возможно, так как любой объект можно рассматривать как совокупность связанных точек.
Систему, состоящую из неподвижных относительно друг друга тел, можно рассматривать как начало отсчёта при движении. Для этого составляется группа уравнений, которые определяют, как изменяется положение перемещающейся точки с течением времени. Другими словами, определяют координаты тела для любого момента. Называют их уравнениями движения. В декартовых координатах система выглядит так: x = f1 (t); y = f2 (t); z = f3 (t).
Существуют следующие виды движения:
Все эти изменения положения в пространстве отличаются по виду скорости, ускорения и принципа смены координат. Линия, по которой перемещается материальная точка, называется траекторией движения. По сути, это пройденный телом путь. При криволинейном перемещении, в отличие от прямолинейного, модуль движения всегда будет превышать путь. Это связано с тем, что расстояние, пройденное по дуге всегда будет больше стягивающей хорды.
Рассматривая перемещающиеся тела через одинаковые временные промежутки, можно выделить равномерные и неравномерные движения. Кроме этого, существуют перемещения тела параллельно самому себе — поступательные. Криволинейное движение можно рассматривать как самостоятельный вид изменения положения, а можно свести его к сумме движений по дугам окружностей с различными радиусами кривизны.
При исследовании движения часто измеряют быстроту смены положения, то есть скорость. Если моменту времени соответствует радиус-вектор движущегося тела, то за малый промежуток времени материальная точка переместится на расстояние: Δs = Δr = r2 — r1. Но для характеристики перемещения используют не саму скорость, а её среднее значение: Vср = Δs / Δt.
Принцип исследования перемещения
Для того чтобы изучить движение тела в пространстве, нужно выбрать систему отсчёта. Пусть имеется тело, находящееся в точке А. Через некоторое время оно переместилось в точку В. Эти две координаты можно соединить прямым отрезком, являющимся вектором перемещения S. Так как известно, где находилось тело вначале и S, то можно определить его положение в любое время вне зависимости от вида передвижения тела.
В механике работают не с самим вектором, а его проекцией. Поэтому для исследования изменения положения нужно выбрать систему координат. За неё принимаются оси ординаты и абсциссы. Тогда начальное положение можно задать как X0 и Y0, а конечное X, Y. Решение основной задачи механики заключается в возможности указать положение в любой момент времени. То есть найти x (t) и y (t). Для этого понадобится знать X0 и Y0.
Эти значения являются фиксированными и не зависят от времени. Совершённое перемещение можно описать как раз с помощью проекции разности конца положения и начала: X — X0 = Sx; Y — Y0 = Sy. Отсюда можно вывести фундаментальное правило нахождения изменения положения для любой точки времени:
Таким образом, чтобы исследовать прямолинейное равномерное движение, нужно решить систему уравнений, а для этого необходимо знать начальное положение и изменение проекции перемещения тела с течением времени на координатную ось.
Под равномерным движением понимается перемещение, когда тело за любые промежутки времени проходит равное расстояние. Прямолинейным оно является тогда, когда точка проходит путь по прямой линии. Значит, если за любые равные промежутки времени тело, совершает одинаковое перемещение, то пройденный путь называют РПД (равномерно-прямолинейным). Например, за Δ t равное единице тело преодолеет расстояние равное S1, за Δt2 соответственно S2. Получается, что вектор перемещения материальной точки всегда направлен в одну сторону и имеет один и тот же модуль.
Следует отметить, что характеристикой такого изменения положения является скорость РПД. Для её определения используется отношение вектора перемещения точки к времени, за которое оно произошло: V = S / t, При этом в формуле время может иметь любое значение. Оно является скалярной величиной и неизменным. Значит, скорость РПД можно описать постоянным вектором, сонаправленным с перемещением вектора расстояния.
Нахождение вектора
Чтобы решить главную задачу механики относительно РПД, нужно воспользоваться формулой для нахождения вектора скорости. Из этого определения следует, что S = V * t. Известно, что если имеется соотношение векторов, то его же можно использовать для их проекций на координатные оси. Значит, Sx = Vx * t и Sy = Vy * t. Следовательно, если известны проекции скорости, то можно определить и вектор проекции перемещения в любое время. Отсюда следует, что решение основной задачи для РПД будет иметь вид:
Эти два уравнения всегда нужно рассматривать в совокупности, так как положение тела задаётся на плоскости двумя координатами. Но на самом деле такой системой пользоваться не очень удобно. Поэтому на практике применяют упрощённое выражение.
Икс и игрек нулевые зависят от значений координат. Формула изменит вид в зависимости от того, какие выбрать за начальные. Так, выражение значительно упростится, если вектор скорости будет направлен вдоль одной из координатных осей. В результате тело будет лежать на одной из них в начальный момент.
Например, пусть это будет ось икс. Если её расположить так, что она будет размещена параллельно вектору скорости, то ось игрек будет ему перпендикулярна. Смещая координатные оси, точку начального положения можно поместить на ось абсциссы. Для такой повёрнутой системы совокупность уравнений РПД будет также справедливым. Но игрек начальный для рассматриваемой системы будет равняться нулю. Ему же будет равна и проекция скорости на ординату. Учитывая это система главных выражений примет вид:
Фактически получился частный случай общего вида решения основной задачи механики. Так как второе уравнение никакой информации не даёт (тождественный ноль), то его можно убрать. Отсюда следует, что РПД рационально описывать, направляя координатную ось вдоль вектора скорости и выбирать начальное положение точки на координатной прямой.
Тогда получается упрощённый вариант главной формулы: x (t) = x0 + Vx + t. При этом направление вектора скорости значение не имеет. По нему он может как совпадать с осью, так и быть ей противоположным. Нужно отметить, что Vx является проекцией и может быть положительной или отрицательной величиной. В первом случае тело движется вдоль координатной прямой, а во втором в противоположном её направлении.
Решение задач
Физика — это наука, которая позволяет не только знать какие-либо законы и определения, но и учит использовать их на практике. Самостоятельное решение примеров позволяет закрепить имеющиеся знания. Существуют типовые задания, с помощью которых можно проработать изученный материал. Вот некоторые из них:
Таким образом, решение задач на ПРД требует логического мышления и знания нескольких формул. Кроме этого, можно использовать и графическое описание, то есть изображать график движения тела на координатной плоскости. Для этого в формулу подставляют значения и строят по результатам зависимость.
Уравнение РПД
Урок 5. Физика 10 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Уравнение РПД»
Мы знаем, что в каждый момент времени, положение точки задаётся радиус-вектором. Пусть в момент времени t0, начальное положение точки задаёт радиус-вектор 

Исходя из определения скорости равномерного прямолинейного движения, запишем:
Как правило, начальный момент времени — это точка отсчёта, поэтому примем t0 = 0. Если мы теперь выразим 
Это и есть уравнение равномерного прямолинейного движения. То есть, если нам известно начальное положение точки и скорость её движения, то мы сможем найти радиус-вектор в каждый момент времени.
Вместо векторного уравнения можно использовать уравнение для каждой из координат:
Поскольку пройденный путь — это изменение координаты х в данном случае, мы можем найти его, используя модуль скорости. Заметим, что числовые значения пройденного пути и перемещения будут совпадать при прямолинейном движении. Только не стоит забывать, что пройденный путь — это скалярная величина, которая не может быть отрицательной.
Перемещение же, легко может быть отрицательным, если точка двигается в направлении, противоположном направлению координатной оси.
Итак, мы выяснили, что для описания равномерного прямолинейного движения достаточно получить уравнение для одной координаты. Давайте рассмотрим, как будут выглядеть графики функций зависимости скорости и координаты от времени. Начнём с простого: при равномерном движении скорость постоянна. Поэтому график зависимости скорости от времени будет представлять собой прямую горизонтальную линию.
Иными словами, при равномерном движении скорость не зависит от времени, так как является константой. Заметим, что если мы рассмотрим конечный промежуток времени, то получим ограниченную область, имеющую форму прямоугольника. Площадь этого прямоугольника будет являться ничем иным, как изменением координаты х. Действительно, ведь длина одной из сторон прямоугольника — это скорость, а длина другой — это время.
Рассмотрим теперь несколько графиков зависимости координаты от времени. На рисунке вы видите три прямых, каждая из которых описывается одним и тем же уравнением.
Точки пересечения этих графиков с осью х соответствуют значениям начального положения х0. Как видно из графика, для зелёной прямой х0 = 0, для синей прямой х0 > 0, а для красной — х0 Оцените видеоурок
Равноускоренное движение: формулы и примеры
Содержание:
Определение
Равноускоренным движением в физике считается такое движение, вектор ускорения которого не меняется по модулю и направлению. Говоря простым языком, равноускоренное движение представляет собой неравномерное движение (то есть идущее с разной скоростью), ускорение которого является постоянным на протяжении определенного промежутка времени. Представим себе автомобиль, который начинает двигаться, первые 2 секунды его скорость равна 10 м/с, следующие 2 секунды он уже движется со скоростью 20 м/с, а еще через 2 секунды уже со скоростью 30 м/с. То есть каждые 2 секунды он ускоряется на 10 м/с, такое движение и есть равноускоренным.
Отсюда можно вывести предельно простое определение равноускоренного движения: это такое движение любого физического тела, при котором его скорость за равные промежутки времени изменяется одинаково.
Примеры
Наглядным примером равноускоренного движения в повседневной жизни может быть велосипед, едущий с горки вниз (но не велосипед, управляемый велосипедистом), или брошенный камень под определенным углом к горизонту.
К слову пример с камнем можно рассмотреть более детально. В любой точке траектории полета на камень действует ускорение свободного падения g. Ускорение g не меняется, то есть остается константой и всегда направлено в одну сторону (по сути, это главное условие равноускоренного движения).
Полет брошенного камня удобно представить в виде сумы движений относительно вертикальной и горизонтальной оси системы координат.
Если вдоль оси Х движение камня будет равномерным и прямолинейным, то вдоль оси Y равноускоренным и прямолинейным.
Формула
Формула скорости при равноускоренном движении будет иметь такой вид:
Где V0 – это начальная скорость тела, а – ускорение (как мы помним, эта величина является константой), t – общее время полета камня.
При равноускоренном движении зависимость V(t) будет иметь вид прямой линии.
Ускорение может быть определено по углу наклона графика скорости. На этом рисунке оно равно отношению сторон треугольника АВС.
Чем больше угол β, тем больше наклон и как следствие, крутизна графика по отношению к оси времени, и тем больше будет ускорение тела.
Рекомендуемая литература по теме
Видео
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.
Похожие посты:
Один комментарий
Прямолинейное движение: равномерное и равноускоренное
Движением тела называется изменение его положения в пространстве относительно других. Рассмотрим равномерное прямолинейное движение тела, для этого введем следующие понятия.
Определение равномерного прямолинейного движения тела
Равномерное прямолинейное движение тела — это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.
Координата— величина, служащая для определения положения какой-либо точки на плоскости или в пространстве.
Перемещением тела называется вектор, соединяющий начальное положение тела с его последующим положением.
Траектория — это линия, вдоль которой движется тело.
Путь — это длина траектории, вдоль которой движется тело.
Скорость ― это векторная величина!
В заданиях, где дана зависимость скорости тела от времени,
пройденный путь можно вычислить как площадь под графиком:
Следующие три переменные включены в равномерное прямолинейное движение:
Координаты: координата, с которой тело начинает двигаться (начальная позиция) 


Скорость: скорость всегда будет постоянной 
Время: момент, в который объект начинает двигаться (начальное время) 


Эти три переменные связаны этой формулой:

где 
Равноускоренное прямолинейное движение
Равноускоренное прямолинейное движение тела — движение, при котором его ускорение не меняется, ни по величине, ни по направлению.
Уравнение равноускоренного движения в проекции на ось Ox имеет вид:





Ускорением тела называется векторная величина, равная отношению изменения скорости за любой промежуток времени к величине этого промежутка:
Зависимость скорости от времени при наличии ускорения определяется выражением:




Применение производной в кинематике
Если существует зависимость координаты от времени x(t), то зависимость скорости от времени можно получить, взяв производную по времени от этой зависимости.
Скорость ― это производная координаты тела по времени:
Например, если зависимость координаты тела при равноускоренном движении имеет вид 
Точно также, ускорение ― это производная от скорости тела:

Примеры выполнения заданий ЕГЭ по физике
Задание 1.
На рисунке представлен график зависимости пути S, пройденного материальной точкой, от времени t. Определите, сколько секунд, после начала движения, когда точка стала двигаться со скоростью 10 м/с.
Ответ:1
Решение: Чтобы определить скорость движения точки на интервале, разделим путь, пройденный точкой, на все время движения на каждом отрезке графика. На интервале с начала движения и до 1 с точка прошла 10 м, следовательно, ее скорость была 10 м/с. Скорость точки на следующих интервалах пути ― 2,5 м/с, 0 м/с и 5 м/с соответственно.
Задание 2.
На рисунке представлен график движения автобуса из пункта А в пункт Б и обратно. Пункт А находится в точке х= 0, а пункт Б ― в точке х= 30 км. Чему равна скорость автобуса на пути из А в Б? Ответ выразить в км/ч.
Ответ: 60 км/ч
Решение:
Согласно графику, зависимость пути автобуса от времени линейна, следовательно, скорость автобуса на всех участках пути постоянна. Из пункта А в пункт Б, находящиеся друг от друга на расстоянии S = 30 км автобус идет
Уравнение движения автобуса: S = vt, откуда v = S/t = 30 км/ 0,5 ч = 60 км/ч.
Задание 3.
На рисунке изображены графики зависимости модуля скорости движения четырех автомобилей от времени. Какой из автомобилей — 1, 2, 3 или 4 — прошел наибольший путь за первые 10 с движения?
Ответ: 3
Решение:
Путь, пройденный каждым из автомобилей, равен площади под соответствующим графиком зависимости модуля скорости автомобиля от времени движения.
Как видно из следующих рисунков, наименьшая площадь под графиком скорости автомобиля 4, наибольшая ― под графиком скорости автомобиля 3.
Автомобиль 1 прошел путь:
Автомобиль 2 прошел путь:
Путь, который проехал автомобиль 4:
Задание 4.
На рисунке представлен график зависимости скорости v автомобиля от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 3 с.
Ответ: 25 м
Решение: Путь, пройденный автомобилем, равен площади под соответствующим графиком зависимости модуля скорости автомобиля от времени движения.
Площадь образовавшейся трапеции равна: 
Задание 5.
Тело движется по оси x. По графику зависимости проекции скорости тела υx от времени t установите, какой путь прошло тело за время от t1= 0 до t2= 4 c.
Ответ: 20.
Решение:
Путь, пройденный телом равен площади под соответствующим графиком зависимости модуля скорости тела от времени движения. Так как тело движется по оси х, других составляющих скорости, кроме υx у тела нет.
Площадь образовавшегося под графиком треугольника равна:
Задание 6
На графике приведена зависимость скорости тела от времени при прямолинейном движении. Определите ускорение тела.
Ответ: 6 м/с 2
Задание 7
По графику зависимости скорости от времени (см. рисунок) определите ускорение прямолинейно движущегося тела в момент времени 2 с.
Задание 8
Задание 9
Тело начинает падать из состояния покоя и перед ударом о Землю имеет скорость 80 м/с. Каково время падения? Сопротивлением воздуха пренебречь.
Ответ: 8с.



Задание 10
Автомобиль трогается с места и движется с постоянным ускорением 5 м/с2. Какой путь прошёл автомобиль, если его скорость в конце пути оказалась равной 15 м/с?
Ответ: 22,5 м.
Определим время, которое понадобилось автомобилю, чтобы развить конечную скорость v = 15 м/с:
Автомобиль прошел путь: 
Задание 11.
При равноускоренном движении автомобиля на пути 25 м его скорость увеличилась от 5 до 10 м/с. Чему равно ускорение автомобиля?
Ответ: 1,5 м/с2.
Решение: Уравнение движения автомобиля 
Скорость автомобиля равна v = v0 + at, конечная скорость равна v = 10 м/с. Выразим из этого уравнения время движения автомобиля:
И определим ускорение из уравнения движения:
Задание 12.
Решение: Уравнение движения пули 
Скорость пули при вылете из ствола считается по формуле v = v0 + at и равна по условию v = 250 м/с. Отсюда, время движения пули равно 
Отсюда, ускорение пули равно:
Таким образом, теперь вы сможете решать задания ЕГЭ по физике на темы равномерное прямолинейное движение и равноускоренное прямолинейное движение.






















































