Робот пылесос что внутри
Как устроен робот-пылесос?
Вы знаете, что каждый третий пылесос, который покупают в Испании – робот-пылесос? Спрос в России на эти устройства также растет из месяца в месяц. Цены варьируются в среднем от 10 000 до 30 000 рублей. Что из себя представляет этот популярный гаджет и как он устроен? На эти вопросы мы ответим в данной статье. Положим на операционный стол робот-пылесос среднего ценового диапазона Yujin Robot iClebo Arte и начнем изучать его внутренности. Звучит жутковато, но уверяю вас, статья подойдет даже для категории читателей 0+.


Переворачиваем робот-пылесос. Два ведущих боковых колеса задают движение устройству, переднее маленькое колесо вспомогательное без привода. На его оси расположен специальный магнитный датчик. Он необходим для измерения расстояния, пройденного роботом. Колесо не вращается вокруг своей горизонтальной оси, в этом нет необходимости. Робот меняет свое направление на месте за счет передачи момента одному из боковых колес, то есть на маневренность это никак не влияет.
Под небольшой пластиковой крышкой расположен Li-Ion аккумулятор емкостью 2200 mAh. У данного образца две боковые щетки, с практической точки зрения это помогает захватить большую площадь за один проезд. Для того, чтобы добраться до плинтуса достаточно одной боковой щетки, до углов полностью пока не добирается ни один робот-пылесос. Две боковые щетки направляют мусор к основной турбощетке, которая в свою очередь направляет его в пылесборник. Всасывающий модуль помогает засосать мусор с турбощетки. Резиновый скребок, расположенный на пылесборнике, подбирает крупный мусор. По такому принципу устроены все роботы-пылесосы в виду отсутствия большой силы всасывания. Результат уборки на гладких полах при такой конструкции очень хороший, на коврах – хуже, робот не может высосать пыль из ворсинок.
Рядом с пылесборником можно заметить два углубления — пазы для полотера. В этом пылесосе имеется функция протирки полов. Основание швабры крепится на дно, робот и пылесосит, и протирает. Салфетку из микрофибры можно смочить водой перед запуском. В процессе работы смачивать ее уже не получится, робот сбрасывает карту помещения и текущую программу уборки при отрывании его от пола. Салфетка помогает собрать мелкую пыль, включая муку, мелкий песок, соль. Для полноценной мойки полов она не подойдет.
Пришло время взяться за инструменты и посмотреть, как же выглядит робот-пылесос изнутри. Вынимаем пылесборник и основную турбощетку. Кладем робот-пылесос на лицевую панель и видим 5 отверстий для болтов. Шестое отверстие находится под наклейкой-пломбой с надписью QC Passed.
Далее необходимо аккуратно отсоединить концы бампера. Особых трудностей при этом возникнуть не должно, пластик достаточно упругий и прочный.
Расположив iClebo лицевой стороной к потолку, вытягиваем декоративную панель робота. Для этого нужно потянуть за край панели на себя и вверх. Вот мы и получили доступ к начинке робота-пылесоса.
Невооруженным взглядом можно разглядеть основные элементы. В роботе установлены 6 электроприводов: два для боковых щеток, один для турбощетки, один для всасывающего модуля (спрятан под пластиковых кожухом), два встроены в корпус боковых колес. Справа под ЖК-экраном робота-пылесоса находится его ”мозг” – микроконтроллер Abov MC81F4216D. Рядом с материнской платой и местом установки пылесборника находится специальный датчик. При его замыкании, iClebo “понимает”, что пылесборник подсоединен, иначе робот-пылесос не сдвинется с места и выдаст ошибку на дисплее.
Снимаем ЖК-экран. Видим камеру, ИК-приемник под ней. В центре светодиоды для экрана.
Освобождаем материнскую плату от множества контактов и видим гироскоп, который нужен для определения угла поворота робота.
И, наконец, освободим от всех контактов саму материнскую плату.
Что же представляет из себя такое устройство, как робот-пылесос. Блок-схема устройства представлена ниже:
У нас имеется материнская плата (Main board) с модулем камеры, дисплеем, модулем управления электроприводами боковых колес и т. д. 19ти вольтовый адаптер, через базу для зарядки робота, заряжает литий-ионный аккумулятор, который питает все остальные элементы схемы. Для часов и таймера используется дополнительная батарейка-таблетка на материнской плате. Три датчика определения перепада высоты (3 PSD Sensors) расположены на дне корпуса устройства. Три инфракрасных датчика (3 IR Sensors) располагаются непосредственно на самом бампере. При обнаружении препятствия робот-пылесос меняет свое направление. Если ИК-датчик не сработал, но робот все же упирается в препятствие, срабатывает механический датчик бампера (3 Bumper SWs). На схеме также изображены 3 Detection Switches — два датчика определяют не оторвались ли колеса от пола, а третий датчик наличия пылесборника. Passive Encoder — датчик, расположенный около передней оси колеса для определения пройденного расстояния.
Для того чтобы понять где робот уже убирался, а где еще нет, он получается информацию со всех вышеперечисленных датчиков и сенсоров. Он замеряет пройденное расстояние и угол поворота, а с помощью камеры и датчиков препятствий «понимает» где границы убираемой площади. Будущие домашние роботы-пылесосы будут использовать камеры для полноценного построения карты помещения, определения наличия людей и животных в комнате и, скорее всего, можно будет жестом указывать роботу на дальнейшие его действия или менять режим работы.
Осталось разобраться еще с колесами. Снимаем боковое колесо. Датчик сбоку колеса помогает определять роботу его положение в пространстве, а именно: стоит ли он на полу? Если контакт разомкнут, робот прекращает работу.
Разобрав корпус колеса, видим вот такой редуктор.
Конечно, всеми этими компонентами управляет ПО, и без правильно написанного программного кода робот функционировать не будет. В данном пылесосе имеется возможность обновления ПО, но сделать это смогут только опытные пользователи, так как требуется программатор для перепрошивки «мозгов» пылесоса. Используется программатор ST-Link. Основная часть прошивки робота осуществляется при помощи этого адаптера, через коннектор J2 JTAG на плате, а через J11 USB обновляется только навигационный модуль. Причем, обе части прошивки взаимосвязаны.
Робот-пылесос — сложное техническое устройство и цены на них относительно высокие, особенно если сравнивать с бытовыми пылесосами за 3000 рублей. Вероятно, когда робот сможет обходиться парой камер для выполнения всех навигационных действий, стоимость производства заметно упадет, а следовательно и конечная стоимость устройства. А пока покупатели платят по большей части за удобство: ставим таймер, уходим на работу, робот убирает в ваше отсутствие и автоматически возвращается на базу. Ну, и конечно же, лень — двигатель прогресса. Люди обычно не хотят ничего делать, лучше за них пусть будут делать всю работу другие. Как раз бытовые роботы для этого и разрабатываются.
Как работают сенсоры роботов-пылесосов
Содержание
Содержание
Наблюдение за работой робота-пылесоса — довольно медитативное и умиротворяющее занятие. Но время от времени у пытливых умов появляется вопрос: «Как роботу удается ориентироваться в пространстве и преодолевать возникающие на его пути препятствия?» Давайте разбираться!
Несмотря на огромное количество мифов о работе робота-пылесоса, этот девайс по праву занимает свое место в наших домах, а все благодаря той легкости и скорости, с которой он выполняет уборку. Его эффективность во многом зависит от количества и типа электронных сенсоров, установленных на борту. В зависимости от модели, робот-пылесос использует от 6 до 15 датчиков, включенных в различные системы.
Назначение датчиков — построение карты объекта, ориентирование в пространстве и обеспечение безопасности девайса. Данные, получаемые с сенсоров, обрабатывает управляющая программа. Ориентируясь на полученные значения параметров, применяются те или иные сценарии, непосредственно влияющие на действия робота-уборщика.
Только слаженная работа всех систем обеспечивает работу пылесоса.
Система позиционирования
Основная система любого робота-пылесоса, отвечающая за построение карты убираемой территории и определение точного местоположения электронного уборщика внутри помещения.
В основе работы системы лежит метод SLAM (Simultaneous Localization And Mapping), основная идея которого — построение ситуационной карты и локализация объекта в пространстве. Это происходит следующим образом. Сканер, установленный на объекте, проверяет пространство вокруг и по отклику своих датчиков составляет карту местности.
В сегмент бытовой техники изобретение пришло из области освоения космоса и близлежащих планет: одними из первых такие радары (точнее, лидары) получили луноходы и марсоходы.
В роботах-пылесосах построение карты необходимо для определения оптимального алгоритма уборки. После составления карты управляющая программа разрабатывает и отдает на исполнение оптимальный маршрут передвижения робота. Мобильный пылесос должен заглянуть даже в самый отдаленный уголок!
В современных роботах-пылесосах построение карты окружающего пространства производят одним из двух типов датчиков.
Лазерное сканирование пространства
Сканирование пространства происходит с помощью лидара (или, как его еще называют, LDS-датчика) — прибора, применяемого для точных измерений в газообразной среде. Распознать LDS-датчик достаточно просто: он представляет собой небольшой выступ в форме шайбы, расположенный на верхней плоскости девайса. Датчик содержит источник и приемник лазерного или светового луча (в маломощных девайсах применяют светодиоды, излучающие потоки света в инфракрасном диапазоне). Для обеспечения кругового обзора LDS-сенсор вращается вокруг своей оси с довольно высокой частотой.
Испускаемый световой луч, встречаясь с препятствиями на своем пути (стены, крупная мебель и т. д.), отражается от них и улавливается приемником лидара. Расстояние до препятствия вычисляется по временной задержке между генерацией и приемом лазерного луча. В большинстве моделей роботов-пылесосов частота вращения датчика, как правило, составляет 5 об/сек, чего вполне достаточно для построения карты и довольно точного вычисления положения пылесоса в помещении.
Работающие по такому же принципу датчики можно встретить и на прототипах беспилотных автомобилей.
LDS-датчик позволяет достаточно точно определять расстояние до стен, крупных предметов и других препятствий. Как правило, в роботах-пылесосах применяются датчики, позволяющие уверенно сканировать пространство на расстоянии до 6 метров.
Основным недостатком такой конструкции является то, что датчик выступает над уровнем верхней плоскости, и добавляет к высоте робота-пылесоса несколько сантиметров. В некоторых случаях это может быть критично, поскольку пылесос просто физически не сможет заехать под низко расположенную полку или пространство под кроватью или шкафом.
Визуальная система навигации
Другим способом навигации является так называемая безлидарная система, основанная на широкоугольной камере.
Вот только камера применяется особая, позволяющая создавать объемные снимки пространства. Иначе такие камеры называют «камерами глубины» или ToF-камерами (Time of Flight, что в буквальном переводе означает «время полета»).
ToF-камеры — новое веяние в сфере мобильных гаджетов. Ими оснащены многие флагманские смартфоны. С помощью такой камеры легко и довольно недорого реализуется механизм распознавания по лицу, обмануть его фотографией человека невозможно.
ToF-камера представляет собой источник света, излучающий в инфракрасном спектре, и светочувствительную матрицу, улавливающую интенсивность отраженного света. Их принцип действия схож с лазерным определением расстояния. Камера рассчитывает время с момента испускания пучка света до момента его фиксации на светочувствительной матрице, вычисляет расстояние до объекта в соответствии с временной задержкой и составляет объемную карту помещения.
Преимуществ у такого метода несколько. Во-первых, уровень освещения не играет определяющей роли. Даже в полумраке сенсору по силам «отрисовать» границы убираемого пространства. Во-вторых, камеру встраивают вровень с верхней поверхностью робота, что позволяет сделать его более компактным, и, следовательно, открыть ему дорогу в труднодоступные места.
Система ориентирования в пространстве
Задача системы ориентирования — минимизация столкновений с препятствиями, возникающими на пути робота-пылесоса.
В отличие от системы позиционирования, сканирующей пространство вокруг пылесоса на несколько метров, датчики ориентирования способны выявить препятствие в пределах одного метра. Как правило, для выявления преград используют датчики двух типов: ультразвуковые и инфракрасные.
Принцип их действия схож. В обеих конструкциях имеются передатчик и приемник сигнала. В качестве самого сигнала используют либо звуковые волны, неслышимые человеческому уху (частотой свыше 20 кГц), или световые лучи инфракрасного диапазона.
При обнаружении препятствий, управляющая программа вносит корректировку в траекторию движения робота-пылесоса и уводит его в сторону.
Ведущую роль в системе играет ультразвуковой датчик. Он располагается в передней части устройства.
Инфракрасные сенсоры располагают на боковых поверхностях робота по его периметру. Они дополняют основной датчик, обеспечивая пылесосу возможность кругового отслеживания препятствий.
Боковые датчики выполняют еще одну функцию. Они обеспечивают движение робота вдоль стены, когда нужно убрать по периметру помещения. Как правило, сенсоры позволяют выдерживать интервал от стены на уровне 10-15 мм. Этого вполне достаточно для уборки мусора подвижными щетками робота-пылесоса.
В случае, когда препятствие не попало в зону действия ни одного из перечисленных датчиков и столкновение с поверхностью все же произошло, в работу вступает третья группа датчиков, установленная в подвижном бампере робота-пылесоса, — датчики касания. При срабатывании они посылают сигнал в центральный процессор, а тот в свою очередь оперативно корректирует траекторию движения робота. Датчики касания выполнены либо в виде обычных концевых выключателей, либо в формате оптопары, в которой световой луч прерывается подвижным «флажком» в момент нажатия на передний бампер.
Система безопасности
Система безопасности предназначена для защиты робота-пылесоса от падений и неправильного его использования со стороны пользователя.
Защиту от падения с высоты обеспечивает группа датчиков, установленная в нижней части по периметру устройства.
Это уже привычные инфракрасные сенсоры, с тем же принципом действия, но вот логика их работы существенно отличается. Датчик постоянно отслеживает наличие твердой поверхности под колесами робота-пылесоса. Как только она пропадает (робот подъехал к краю ступени или пытается съехать с высокого порожка), центральный процессор получает тревожный сигнал с датчика и изменяет траекторию движения робота-уборщика.
Сочетание светлых и темных цветовых схем напольного покрытия может вызвать ложные срабатывания оптических датчиков высоты, вследствие чего робот просто откажется проводить уборку темных зон.
В мотор-редукторах, приводящих в движение колеса пылесоса, установлены датчики опрокидывания робота. Если одно или оба колеса окажутся вывешенными, срабатывание датчиков приведет к остановке моторов. Это убережет аккумуляторную батарею от разрядки. Возобновление работы возможно только после установки робота-пылесоса на ровную поверхность.
Датчик опрокидывания — обычный концевой выключатель, разрывающий цепь питания при опрокидывании пылесоса или вывешивании одного из колес.
Чтобы не допустить использование робота-пылесоса без контейнера для сбора мусора, в приемный лоток устанавливают датчик наличия контейнера. Вариаций исполнения не так уж и много. Самый простой — установка концевого выключателя, более продвинутый — датчик в виде геркона. На корпусе контейнера устанавливают постоянный магнит, активирующий геркон, когда контейнер установлен на свое место. Процессор «видит» замкнутую цепь и «понимает» что устройство можно использовать.
Система парковки на базовую станцию
Возвращение на базовую станцию после уборки или в случае необходимости пополнения заряда аккумулятора, — еще одна интересная функция, реализованная в роботе-пылесосе. При выполнении процедуры возвращения на базовую станцию, задействованы две системы. На первом этапе — система позиционирования, которая отвечает за текущее положение устройства по отношению к базовой станции. Алгоритм определяет кратчайший оптимальный маршрут. Когда робот-пылесос находится в зоне видимости базовой станции, в работу включаются датчики парковки.
Система работает следующим образом. В базовой станции расположен мощный инфракрасный светодиод, выполняющий функцию маяка. В корпусе робота-пылесоса имеется пара оптических приемников, захватывающих луч маяка. Каждый из приемников передает процессору свое значение расстояния до маяка, а тот корректирует маршрут движения таким образом, чтобы оба значения сигналов сравнялись по величине. Как только это происходит, считается, что робот занял позицию прямо перед базой, после чего происходит его парковка на контактных площадках базовой станции.
Как видно, датчики робота-пылесоса превращают его в полностью автономное устройство, способное самостоятельно навести порядок в доме. Получается как в той известной песне Сережи Сыроежкина: «Вкалывают роботы, счастлив человек!». Единственное, за чем необходимо следить, чтобы девайс всегда находился в строю, так это за чистотой самих датчиков.
Как работает робот пылесос: устройство и принципы уборки
Есть люди, которые занимаются уборкой полов только раз в неделю, а есть и другие, кто делает эту работу значительно чаще. Привлекательной характеристикой роботов-пылесосов становится тот факт, что они отвечают нуждам обоих категорий. Так или иначе, с ними дом становится безупречней, практически не требуя человеческого фактора.
Современные лучшие роботы пылесосы далеки от первых моделей, которые приходилось искать под каждым предметом мебели в доме, пока вы не услышите сигнал нехватки энергии. Последние модели, направленные на уборку домов, предлагают разительное повышение эффективности, способность к самоочищению, а также умение находить дорогу к зарядной станции самостоятельно.
В этой статье мы подробнее разберемся как работает робот пылесос. Помогать нам понять как устроен робот пылесос будет iRobot Roomba Red, а также проверим несколько других роботов-пылесосов на рынке.
Принцип работы робота пылесоса
Современный рынок предлагает огромный выбор роботов-пылесосов, цены на которые варьируются от 3.500 рублей до 100.000 рублей. Эти пылесосы для клининговых услуг характеризуются низкой посадкой и компактными размерами, чтобы сохранить возможность проникать под мебель, что недоступно традиционным пылесосам.
Большинство производителей скажет вам, что робот пылесос предназначен для дополнения к стандартной уборке пылесосом, но не может заменить эту работу. Они предназначены для выполнения ежедневной уборки, которая становится важным штрихом в поддержании чистоты, таким образом, робот-пылесос призван поддерживать чистоту между ручной уборкой пылесосом. Тем не менее, если вы из тех людей, кто никогда не пылесосит, роботизированный помощник сможет сделать полы и ковры чище, чем они есть сейчас, а вам не придется и палец о палец ударить.
Самым популярным производителем роботов-пылесосов в России остается iRobot, который предлагает на рынке разнообразные модели, начиная с базовой модели Roomba Red и заканчивая технологически продвинутыми Roomba Scheduler. Для того, чтобы разобраться с тем, как работает робот пылесос, мы заполучили в свои руки iRobot Roomba Red, который станет нашим проводником в мир роботизированной уборки. Давайте начнем с того, что у него внутри.
Устройство робота пылесоса Roomba
iRobot Roomba Red имеет размеры, приблизительно, 13-ю дюймами (33 см) в диаметре и 3,5 дюймами (9 см) в высоту. Внешний осмотр робота пылесоса позволяет выявить следующие детали:
Большинство роботов Roomba работают на аккумуляторах NiMH. Аккумулятор Roomba Red, для примера, рассчитан на 3 ампер-часа, а его полная зарядка занимает порядка семи часов / 18 вольт. Некоторые из последних моделей роботов-пылесосов iRobot, конечно, сократили это время до 2-3 часов. Полная зарядка равна приблизительно 2-3 часам времени уборки, что в мире пылесосов Roomba означает 2-3 комнаты, прежде чем роботу потребуется зарядка. За мобильность робота-пылесоса отвечают два моторизованных колеса. Roomba управляется переменной подачей мощности на каждое колесо.
Пылесос Roomba оборудован пятью моторами:
Далее мы рассмотрим другие системы, ответственные за работу роботизированных пылесосов Roomba, начиная с наиболее интересной: Навигационной системы.
Навигационная система робота-пылесоса Roomba
Если рассматривать её отдельно, то именно навигационная система делает роботы-пылесосы роботизированными. И основная разница в моделях за 3.500 рублей и за 80.000 рублей, скрывается в точности навигационных датчиков. Подопытный Roomba Red использует AWARE Robotic Intelligence System от iRobot, систему, призванную сократить вмешательство человека в работу робота максимально. Система осведомления включает несколько датчиков, которые собирают данные из окружающей среды, отправляют их на микропроцессор робота-пылесоса, после чего поведение Roomba регулируется должным образом. Согласно iRobot, система может реагировать на новые вводные данные до 67 раз в секунду. Далее мы разберемся с навигацией роботов-пылесосов детально и поймем как работает робот пылесос более детально.
Первое, что Roomba делает при нажатии на кнопку «Clean», рассчитывает размеры комнаты. Компания iRobot была весьма туманна, когда речь зашла о том, как робот это делает, но мы считаем, что робот посылает инфракрасный сигнал и проверяет, сколько времени требуется на возврат сигнала до приемника, расположенного на бампере робота-пылесоса. После того, как робот устанавливает размеры комнаты, он знает, как долго и далеко ему нужно двигаться в процессе уборки.
Ну а пока робот-пылесос убирает, он избегает ступенек и других видов перепадов высоты, используя четыре инфракрасных датчика на передней нижней части робота. Это «Датчики Обрыва», которые постоянно посылают инфракрасные сигналы и, получив отрицательный сигнал, Roomba незамедлительно остановится. Если робот приближается к обрыву, сигнал пропадет. Старшие модели, как Roomba Red, просто разворачиваются и двигаются в другую сторону, современные же модели способы почистить край обрыва. Когда Roomba Red врезается во что-то, его бампер активирует механические датчики, которые сообщают системе робота, что он столкнулся с препятствием. Затем используется определенный алгоритм действий, вовлекающих поворот и попытку движения вперед до тех пор, пока робот не сможет двигаться вперед.
Есть ещё один инфракрасный датчик, который мы назовем «Датчиком Стены», он расположен на правой стороне бампера и позволяет роботу-пылесосу Roomba очень внимательно двигаться вдоль стены и вокруг других объектов (например, мебели), не касаясь их. Это значит, что робот может пройтись вдоль плинтусов, не натыкаясь на них. Он также может самостоятельно рассчитать себе путь уборки, что, согласно iRobot, подключает предварительно заданный алгоритм, который позволяет роботу полностью охватить полы.
Алгоритм уборки робота-пылесоса Roomba Red
Когда мы тестировали робот пылесос, мы обнаружили, что Roomba начинает уборку двигаясь по спирали наружу, а затем направляется к периметру комнаты. После того, как он встречается с препятствием, он считает, что достиг периметра комнаты. Затем робот убирает вдоль «периметра», пока не достигнет ещё одного препятствия, после чего он чистит вокруг него, находит четкий путь и продолжает двигаться по комнате между объектами, будь то стены или мебель, пока не выйдет отведенное время уборки. Идея, кажется, логичной, уборка в течение определенного времени может обеспечить покрытие всего пола, но сможете ли вы достичь полного охвата пола на практике?
Роботы-пылесосы Roomba могут убирать около двух часов на одной зарядке. Если аккумулятора окажется недостаточно, Roomba просто вернется и подключится к зарядному устройству сам по себе. Зарядная станция поставляется в качестве дополнительной опции для моделей роботов iRobot начального уровня, однако, практически все роботы среднего и далее диапазона укомплектованы зарядной станцией. Возвращение робота на базу достигается с помощью инфракрасного приемника на переднем бампере. Когда батарея робота-пылесоса разряжается, тот начинает искать инфракрасный сигнал, излучаемый базой. После того, как робот находит его, Roomba следует сигналу зарядной станции и, таким образом, самостоятельно возвращается для подзарядки. Некоторые роботы-пылесосы также самостоятельно возвращаются к уборке после зарядки.
Таким образом, Roomba достаточно умны, чтобы чистить полы, пока вы смотрите кино, но остаются пока некоторые действия, необходимые с вашей стороны. Во-первых, вам придется удалить небольшие препятствия на полу, чтобы Roomba не застревал на них и не пытался втянуть их. Вы также должны указать роботу, куда двигаться нельзя. Используйте для этого включенные в комплект виртуальные стены, которые помогут содержать робота в определенных границах. Виртуальные стены подают инфракрасные сигналы, которые Roomba воспринимает по средствам приемника на бампере. Когда он принимает сигнал от виртуальной стены, он знает, что пора развернуться и направиться в другую сторону.
Многообразие датчиков робота-пылесоса, позволяют ему перемещаться в доме сравнительно автономно. Теперь давайте выясним, как он выполняет свою истинную цель: пылесосит?
Уборка роботом-пылесосом Roomba
По данным iRobot, более половины владельцев Roomba, называют их маленькими друзьями-пылесосами. Компания Electrolux, производитель высококачественных роботов-пылесосов Tribolite, сообщает, что получает письма и фотографии из семей, которые владеют роботами. Тем не менее, большинство людей покупают робот-пылесос не потому, что ищут себе нового питомца, которого не нужно кормить. Они покупают его потому, что полы пачкаются.
Робот-пылесос Roomba Red имеет систему очистки из трех частей. Если вы удалите щетки в сборе, можно увидеть два датчика грязи:
Боковая щетка несколько выступает за пределы робота-пылесоса, чтобы достичь районов, к которым робот-пылесос не может получить доступ. Эта щетка также вращается вдоль стен, поднимает грязь и пыль, направляя их к области пылесоса. Щетка с противоположной стороны пылесоса Roomba направляет к пылесосу грязь, которая находится под корпусом робота.
Экстрактор на нижней стороне Roomba состоит из двух вращающихся в противоположных направлениях щеток, которые поднимают грязь и другой мусор, направляя его непосредственно в мусорный бак.
Пылесос втягивает грязь и пыль, которую поднимает робот, пока движется по полу.
Вам, как правило, необходимо чистить мусорный бак, по крайней мере, один раз для каждой комнаты, которую пылесосит Roomba и, возможно, два или три раза, в зависимости от того, насколько грязные полы. Начальные модели пылесосов Roomba не знают, когда бак полон, он просто продолжает убирать. Вам также потребуется заменить фильтр, когда тот будет забит слишком сильно. У пылесоса нет мешка для сбора пыли, он просто собирает всё в мусорный бак.
Что касается мощности всасывания, web-сайт производителя утверждает, что пылесосы Roomba предлагают мощность всасывания, идентичную вертикальным пылесосам, хотя характеристики не предлагают ничего подобного. Тестирование роботов-пылесосов Roomba Red показало, что они отлично чистят полы из дерева и линолеум, собирая значительное количество грязи и шерсти домашних животных на низком и среднем ворсе ковров. Согласно производителю, роботы Roomba не предназначены для уборки ковров с высоким ворсом.
Теперь, когда вы самостоятельно пылесосите свою квартиру, вы принимаете разные решения в процессе. Например, если вы видите, что участок особенно грязный, вы проводите за его уборкой больше времени. Когда вы переходите с линолеума на кухне к ковру в зале, вы переключаете щетку и мощность пылесоса, чтобы достичь максимальной производительности на основе типа пола и функций пылесоса. Роботы-пылесосы Roomba призваны хотя бы частично воспроизвести способность человека к уборке.
Для того, чтобы выяснить, какие участки пола нуждаются в дополнительной уборке, Roomba Red использует два датчика грязи, расположенные непосредственно над центральной щеткой. Эти датчики используют акустическое действие. Когда мешалка поднимает большое количество грязи, её частицы вызывают вибрацию сильнее от попадания на металлические пластины датчиков. Датчики распознают увеличение количества грязи и сообщают Roomba, что в этой области стоит пройтись снова. Для того, чтобы обнаружить смену напольного покрытия, Roomba имеет подвижную колодку (в которой находится щетка), высоту которой регулирует автоматически, когда фиксирует подъем на 1-1,5 сантиметров от поверхности пола.
Есть также особенность, доступная роботам-пылесосам и не доступная человеку с вертикальным пылесосом, они могут убирать под мебелью. Благодаря тому, что Roomba Red в высоту насчитывает только 9 сантиметров, он легко может закатиться под большинство столиков, тумбочек, кроватей и даже под некоторые кушетки. Возможность уборки под мебелью, возможно, одна из козырных карт роботов-пылесосов.
iRobot Roomba Red является удобным устройством, но это лишь один из примеров робота пылесоса. В следующем разделе мы собираемся попробовать другие роботы-пылесосы, доступные на рынке.
Модели и виды роботов-пылесосов
Современный рынок предлагает огромный выбор моделей роботов пылесосов, каждый из которых охватывает определенные задачи — в первую очередь, тем не менее, они пылесосы. Большинство моделей также оснащается своего рода системой уклонения от препятствий, и работают с пульта дистанционного управления. Кроме того, существуют определенные различия между продуктами, на которые приходится большой ассортимент в цене. В этом разделе мы обсудим несколько роботов пылесосов и их отличительные характеристики.
В ассортименте дорогостоящих моделей роботов-уборщиков, вы сможете наблюдать тенденцию к расширению обязанностей в уборке, поскольку они будут делать больше, чем просто пылесосить полы. Продукты, которые раньше продавались исключительно в форме роботов-пылесосов, сегодня начинают предлагать дополнительные функции, среди которых подключение к сети Интернет, домашние системы видеонаблюдения или системы очистки воздуха. Будущее, вероятно, ждут домашние роботы, которые загружают музыку, отвечают на телефон, разогревают духовки, пока пылесосят ваш дом или квартиру.
За получением дополнительной информации по роботам-пылесосам, посетите соответствующий раздел нашего сайта: « Роботы-пылесосы «












